|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Data | |
---|---|
visad | The core VisAD package, providing support for VisAD's Data & MathType hierarchy, as well as for VisAD Displays and remote collaboration. |
visad.bom | |
visad.cluster | |
visad.data | Provides for importing data to and exporting data from VisAD. |
visad.data.amanda | |
visad.data.bio | Provides data forms for handling common microscopy formats. |
visad.data.dods | Supports read-only access to datasets on DODS servers by importing such datasets as VisAD data objects. |
visad.data.fits | Provides for importing a FITS dataset into VisAD. |
visad.data.gif | Provides for importing GIF, JPEG and PNG files into VisAD. |
visad.data.gis | |
visad.data.hdf5 | |
visad.data.hdfeos | Provides for importing an HDF-EOS dataset into VisAD. |
visad.data.hrit | |
visad.data.jai | |
visad.data.mcidas | Provides for importing McIDAS AREA files and McIDAS base map (OUTL) files into VisAD. |
visad.data.netcdf | Provides for importing a netCDF dataset into VisAD and for exporting a VisAD data object to a netCDF dataset. |
visad.data.netcdf.in | Provides for importing a netCDF dataset into VisAD. |
visad.data.netcdf.out | Provides for exporting a VisAD data object to a netCDF dataset. |
visad.data.text | |
visad.data.tiff | |
visad.data.vis5d | Provides for importing a Vis5D dataset into VisAD. |
visad.data.visad | Provides for importing and exporting serialized Java object files into and out of VisAD. |
visad.data.visad.object | |
visad.formula | Provides an interface for automatically evaluating formulas based on user-defined operators and functions. |
visad.georef | Provides classes for geo-referencing. |
visad.java2d | Provides support for two-dimensional VisAD Displays using Java2D. |
visad.java3d | Provides support for two- and three-dimensional VisAD Displays using Java3D. |
visad.jmet | |
visad.math | |
visad.matrix | |
visad.meteorology | Provides classes that are useful in the field of meteorology. |
visad.python | |
visad.sounder | |
visad.ss | Provides a spreadsheet user interface for VisAD that can import data from any form VisAD supports and compute new data objects using formulas by utilizing the visad.formula package. |
visad.util | Provides a collection of useful utilities, many of them GUI widgets, to aid in VisAD application design. |
Uses of Data in visad |
---|
Subinterfaces of Data in visad | |
---|---|
interface |
Field
Field is the VisAD interface for finite samplings of functions from R^n to a range type, where n>0. |
interface |
FlatFieldIface
FlatField is the VisAD class for finite samplings of functions whose range type and range coordinate systems are simple enough to allow efficient representation. |
interface |
Function
Function is the interface for approximate implmentations of mathematical function. |
interface |
Gridded1DSetIface
Gridded1DSetIface is the interface to a finite set of samples of R. |
interface |
GriddedDoubleSet
GriddedDoubleSet is an interface for GriddedSets that have double-precision samples rather than single-precision samples. |
interface |
GriddedSetIface
GriddedSetIface is the interface to a finite set of samples of R^n. |
interface |
RealIface
Interface to scalar data for real numbers represented as double precision floating point values. |
interface |
RealTupleIface
Interface to the VisAD data class for vectors in R^n for n>0. |
interface |
RemoteData
RemoteData is the interface for Remote VisAD data objects. |
interface |
RemoteField
RemoteField is the interface for Remote VisAD Field-s. |
interface |
RemoteFlatField
RemoteFlatField is the interface for Remote VisAD FlatField-s. |
interface |
RemoteFunction
RemoteFunction is the interface for Remote VisAD Function-s. |
interface |
RemoteTupleIface
RemoteTupleIface is the interface for Remote VisAD TupleIface-s. |
interface |
SampledSetIface
Interface to the abstract superclass of GriddedSet-s and the like. |
interface |
ScalarIface
Interface to the VisAD hierarchy of scalar data. |
interface |
SetIface
Interface to the abstract superclass of the VisAD hierarchy of sets. |
interface |
SimpleSetIface
Interface to the abstract superclass of Sets with a unique ManifoldDimension. |
interface |
TupleIface
TupleIface is the VisAD data interface for vectors. |
Classes in visad that implement Data | |
---|---|
class |
DataImpl
DataImpl is the superclass for VisAD's data hierarchy, inheriting the Data interface. |
class |
DateTime
DateTime is a class of objects for holding date and time information. |
class |
DoubleSet
DoubleSet represents the finite (but large) set of samples of R^dimension made by vectors of IEEE double precision floating point numbers. |
class |
DoubleStringTuple
This provides a LoCal Tuple that can hold numeric and string values without taking the hit that having slots and lots of Real and Text objects around. |
class |
DoubleTuple
This provides a LoCal RealTuple that can hold numeric values without taking the hit that having lots and lots of Real objects around. |
class |
FieldImpl
FieldImpl is the VisAD class for finite samplings of functions from R^n to a range type, where n>0. |
class |
FlatField
FlatField is the VisAD class for finite samplings of functions whose range type and range coordinate systems are simple enough to allow efficient representation. |
class |
FloatSet
FloatSet represents the finite (but large) set of samples of R^dimension made by vectors of IEEE single precision floating point numbers. |
class |
FunctionImpl
FunctionImpl is the abstract superclass for approximate implmentations of mathematical functions. |
class |
Gridded1DDoubleSet
Gridded1DDoubleSet is a Gridded1DSet with double-precision samples. |
class |
Gridded1DSet
Gridded1DSet represents a finite set of samples of R. |
class |
Gridded2DDoubleSet
Gridded2DDoubleSet is a Gridded2DSet with double-precision samples. |
class |
Gridded2DSet
Gridded2DSet represents a finite set of samples of R^2. |
class |
Gridded3DDoubleSet
Gridded3DDoubleSet is a Gridded3DSet with double-precision samples. |
class |
Gridded3DSet
Gridded3DSet represents a finite set of samples of R^3. |
class |
GriddedSet
GriddedSet is implemented by those Set sub-classes whose samples lie on a rectangular grid topology (but note the geometry need not be rectangular). |
class |
ImageFlatField
ImageFlatField is a VisAD FlatField backed by a java.awt.image.BufferedImage object, instead of the usual float[][] or double[][] samples array. |
class |
Integer1DSet
Integer1DSet represents a finite set of samples of R at an integer lattice based at the origin (i.e, 0, 1, 2, ..., length-1). |
class |
Integer2DSet
Integer2DSet represents a finite set of samples of R^2 at an integer lattice based at the origin. |
class |
Integer3DSet
Integer3DSet represents a finite set of samples of R^3 at an integer lattice based at the origin. |
class |
IntegerNDSet
IntegerNDSet represents a finite set of samples of R^n at an integer lattice based at the origin. |
class |
Irregular1DSet
Irregular1DSet represents a finite set of samples of R. |
class |
Irregular2DSet
IrregularSet for a finite number of samples of R. |
class |
Irregular3DSet
Irregular3DSet represents a finite set of samples of R^3. |
class |
IrregularSet
IrregularSet is implemented by those Set sub-classes whose samples do not form any ordered pattern. |
class |
Linear1DSet
Linear1DSet represents a finite set of samples of R in an arithmetic progression. |
class |
Linear2DSet
Linear2DSet represents a finite set of samples of R^2 in a cross product of two arithmetic progressions. |
class |
Linear3DSet
Linear3DSet represents a finite set of samples of R^3 in a cross product of three arithmetic progressions. |
class |
LinearLatLonSet
LinearLatLonSet represents a finite set of samples of (Latitude, Longitude) in a cross product of two arithmetic progressions. |
class |
LinearNDSet
LinearNDSet represents a finite set of samples of R^Dimension in a cross product of arithmetic progressions. |
class |
List1DDoubleSet
List1DDoubleSet is the class for Set-s containing lists of 1-D double values with no topology. |
class |
List1DSet
List1DSet is the class for Set-s containing lists of 1-D values with no topology. |
class |
ProductSet
ProductSet is the cross-product of an array of SampledSets. |
class |
Real
Real is the class of VisAD scalar data for real numbers represented as double precision floating point values. |
class |
RealTuple
RealTuple is the VisAD data class for vectors in R^n for n>0. |
class |
RemoteDataImpl
RemoteDataImpl is the VisAD remote adapter for DataImpl. |
class |
RemoteFieldImpl
RemoteFieldImpl is the VisAD remote adapter for FieldImpl. |
class |
RemoteFlatFieldImpl
RemoteFlatFieldImpl is the VisAD remote adapter for FlatField. |
class |
RemoteFunctionImpl
RemoteFunctionImpl is the VisAD remote adapter for FieldImpl. |
class |
SampledSet
SampledSet is the abstract superclass of GriddedSets, PolyCells and MultiCells. |
class |
Scalar
Scalar is the superclass of the VisAD hierarchy of scalar data. |
class |
Set
Set is the abstract superclass of the VisAD hierarchy of sets. |
class |
SimpleSet
SimpleSet is the abstract superclass of Sets with a unique ManifoldDimension. |
class |
SingletonSet
SingletonSet is the class for Set-s containing one member. |
class |
Text
Text is the class of VisAD scalar data for text strings. |
class |
Tuple
Tuple is the general VisAD data class for vectors. |
class |
UnionSet
UnionSet is the union of an array of SampledSets. |
Methods in visad that return Data | |
---|---|
Data |
DataImpl.__add__(Data data)
A wrapper around add for JPython |
Data |
DataImpl.__add__(double data)
A wrapper around __add__ for JPython |
Data |
DataImpl.__div__(Data data)
A wrapper around divide for JPython |
Data |
DataImpl.__div__(double data)
A wrapper around __div__ for JPython |
Data |
Tuple.__getitem__(int index)
A wrapper around getComponent for JPython. |
Data |
Set.__getitem__(int index)
for JPython |
Data |
FieldImpl.__getitem__(int index)
A wrapper around getSample for JPython. |
Data |
FunctionImpl.__getitem__(Real domain)
A wrapper around evaluate for JPython. |
Data |
FunctionImpl.__getitem__(RealTuple domain)
A wrapper around evaluate for JPython. |
Data |
DataImpl.__mod__(Data data)
A wrapper around remainder for JPython |
Data |
DataImpl.__mod__(double data)
A wrapper around __mod__ for JPython |
Data |
DataImpl.__mul__(Data data)
A wrapper around multiply for JPython |
Data |
DataImpl.__mul__(double data)
A wrapper around __mul__ for JPython |
Data |
DataImpl.__neg__()
A wrapper around negate for JPython |
Data |
DataImpl.__pow__(Data data)
A wrapper around pow for JPython |
Data |
DataImpl.__pow__(double data)
A wrapper around __pow__ for JPython
For low powers, do the multiply directly to preserve units. |
Data |
DataImpl.__radd__(double data)
A wrapper around __add__ for JPython |
Data |
DataImpl.__rdiv__(double data)
A wrapper around __div__ for JPython |
Data |
DataImpl.__rmod__(double data)
A wrapper around __mod__ for JPython |
Data |
DataImpl.__rmul__(double data)
A wrapper around __mul__ for JPython |
Data |
DataImpl.__rpow__(double data)
A wrapper around __pow__ for JPython |
Data |
DataImpl.__rsub__(double data)
A wrapper around __sub__ for JPython |
Data |
DataImpl.__sub__(Data data)
A wrapper around subtract for JPython |
Data |
DataImpl.__sub__(double data)
A wrapper around __sub__ for JPython |
Data |
RemoteDataImpl.abs()
call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.abs()
call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.abs()
call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.abs(int sampling_mode,
int error_mode)
call unary() to take the absolute value of this |
Data |
DataImpl.abs(int sampling_mode,
int error_mode)
call unary() to take the absolute value of this |
Data |
Data.abs(int sampling_mode,
int error_mode)
call unary() to take the absolute value of this |
Data |
RemoteDataImpl.acos()
call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.acos()
call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.acos()
call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.acos(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing radian Units |
Data |
DataImpl.acos(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing radian Units |
Data |
Data.acos(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing radian Units |
Data |
RemoteDataImpl.acosDegrees()
call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.acosDegrees()
call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.acosDegrees()
call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.acosDegrees(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing degree Units |
Data |
DataImpl.acosDegrees(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing degree Units |
Data |
Data.acosDegrees(int sampling_mode,
int error_mode)
call unary() to take the arccos of this producing degree Units |
Data |
RemoteDataImpl.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
DataImpl.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
Data.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
TupleIface.adjustSamplingError(Data error,
int error_mode)
return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
Tuple.adjustSamplingError(Data error,
int error_mode)
return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
RemoteDataImpl.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
RealIface.adjustSamplingError(Data error,
int error_mode)
Returns a clone, except that the ErrorEstimate of the clone is adjusted for a given error mode and uncertainty. |
Data |
Real.adjustSamplingError(Data error,
int error_mode)
return a Real that clones this, except its ErrorEstimate is adjusted for the sampling error in error |
Data |
FlatField.adjustSamplingError(Data error,
int error_mode)
return a FlatField that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
FieldImpl.adjustSamplingError(Data error,
int error_mode)
return a Field that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
DataImpl.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
Data.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
RemoteDataImpl.asin()
call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.asin()
call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.asin()
call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.asin(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing radian Units |
Data |
DataImpl.asin(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing radian Units |
Data |
Data.asin(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing radian Units |
Data |
RemoteDataImpl.asinDegrees()
call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.asinDegrees()
call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.asinDegrees()
call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.asinDegrees(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing degree Units |
Data |
DataImpl.asinDegrees(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing degree Units |
Data |
Data.asinDegrees(int sampling_mode,
int error_mode)
call unary() to take the arcsin of this producing degree Units |
Data |
RemoteDataImpl.atan()
call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atan()
call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atan()
call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atan(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing radian Units |
Data |
DataImpl.atan(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing radian Units |
Data |
Data.atan(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing radian Units |
Data |
RemoteDataImpl.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
DataImpl.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
Data.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
RemoteDataImpl.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
DataImpl.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
Data.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
RemoteDataImpl.atanDegrees()
call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atanDegrees()
call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atanDegrees()
call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atanDegrees(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing degree Units |
Data |
DataImpl.atanDegrees(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing degree Units |
Data |
Data.atanDegrees(int sampling_mode,
int error_mode)
call unary() to take the arctan of this producing degree Units |
Data |
Text.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this (AdaptedData) and data. |
Data |
DataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
Data.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
TupleIface.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Tuple.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this (AdaptedData) and data. |
Data |
RealTuple.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Real.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
FlatField.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Return new Field with value 'this op data'. |
Data |
FieldImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new Field with value 'this op data'; test for various relations between types of this and data |
Data |
DataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
Data.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
RemoteDataImpl.ceil()
call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.ceil()
call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.ceil()
call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.ceil(int sampling_mode,
int error_mode)
call unary() to take the ceiling of this |
Data |
DataImpl.ceil(int sampling_mode,
int error_mode)
call unary() to take the ceiling of this |
Data |
Data.ceil(int sampling_mode,
int error_mode)
call unary() to take the ceiling of this |
Data |
RemoteDataImpl.changeMathType(MathType new_type)
call unary() to clone this except with a new MathType |
Data |
DataImpl.changeMathType(MathType new_type)
call unary() to clone this except with a new MathType |
Data |
Data.changeMathType(MathType new_type)
call unary() to clone this except with a new MathType |
Data |
RemoteDataImpl.cos()
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.cos()
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.cos()
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.cos(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees |
Data |
DataImpl.cos(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees |
Data |
Data.cos(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming radian Units unless this actual Units are degrees |
Data |
RemoteDataImpl.cosDegrees()
call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.cosDegrees()
call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.cosDegrees()
call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.cosDegrees(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming degree Units unless this actual Units are radians |
Data |
DataImpl.cosDegrees(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming degree Units unless this actual Units are radians |
Data |
Data.cosDegrees(int sampling_mode,
int error_mode)
call unary() to take the cos of this assuming degree Units unless this actual Units are radians |
Data |
RemoteFunctionImpl.derivative(int error_mode)
|
abstract Data |
FunctionImpl.derivative(int error_mode)
|
Data |
Function.derivative(int error_mode)
return the tuple of derivatives of this Function with respect to all RealType components of its domain RealTuple; propogate errors according to error_mode |
Data |
FlatField.derivative(int error_mode)
|
Data |
FieldImpl.derivative(int error_mode)
|
Data |
RemoteFunctionImpl.derivative(MathType[] derivType_s,
int error_mode)
|
abstract Data |
FunctionImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
Function.derivative(MathType[] derivType_s,
int error_mode)
return the tuple of derivatives of this Function with respect to all RealType components of its domain RealTuple; set result MathTypes of tuple components to derivType_s; propogate errors according to error_mode |
Data |
FlatField.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
FieldImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
RemoteFunctionImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
abstract Data |
FunctionImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
Function.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
return the tuple of derivatives of this Function with respect to the RealTypes in d_partial_s; the RealTypes in d_partial_s may occur in this Function's domain RealTupleType, or, if the domain has a CoordinateSystem, in its Reference RealTupleType; set result MathTypes of tuple components to derivType_s; propogate errors according to error_mode |
Data |
FlatField.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
FieldImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
RemoteDataImpl.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
Data |
DataImpl.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
Data |
Data.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
Data |
RemoteFunctionImpl.evaluate(Real domain)
|
Data |
FunctionImpl.evaluate(Real domain)
Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS) |
Data |
Function.evaluate(Real domain)
Evaluate this Function at domain; for 1-D domains use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS) |
Data |
RemoteFunctionImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
|
Data |
FunctionImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
Evaluate this Function with non-default modes for resampling and errors |
Data |
Function.evaluate(Real domain,
int sampling_mode,
int error_mode)
Evaluate this Function, for 1-D domains, with non-default modes for resampling and errors |
Data |
RemoteFunctionImpl.evaluate(RealTuple domain)
|
Data |
FunctionImpl.evaluate(RealTuple domain)
Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS) |
Data |
Function.evaluate(RealTuple domain)
Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS) |
Data |
RemoteFunctionImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
|
Data |
FunctionImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
Evaluate this Function with non-default modes for resampling and errors |
Data |
Function.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
Evaluate this Function with non-default modes for resampling and errors |
Data |
RemoteDataImpl.exp()
call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.exp()
call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.exp()
call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.exp(int sampling_mode,
int error_mode)
call unary() to take the exponent of this |
Data |
DataImpl.exp(int sampling_mode,
int error_mode)
call unary() to take the exponent of this |
Data |
Data.exp(int sampling_mode,
int error_mode)
call unary() to take the exponent of this |
Data |
RemoteDataImpl.floor()
call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.floor()
call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.floor()
call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.floor(int sampling_mode,
int error_mode)
call unary() to take the floor of this |
Data |
DataImpl.floor(int sampling_mode,
int error_mode)
call unary() to take the floor of this |
Data |
Data.floor(int sampling_mode,
int error_mode)
call unary() to take the floor of this |
Data |
TupleIface.getComponent(int i)
return component for i between 0 and getDimension() - 1 |
Data |
Tuple.getComponent(int i)
Returns a component of this instance. |
Data |
DoubleTuple.getComponent(int i)
Get the i'th component. |
Data |
DoubleStringTuple.getComponent(int i)
Get the i'th component. |
Data[] |
Tuple.getComponents()
Returns the components that constitute this instance. |
Data[] |
Tuple.getComponents(boolean copy)
Returns the components that constitute this instance. |
Data[] |
DoubleTuple.getComponents(boolean copy)
Create, if needed, and return the component array. |
Data[] |
DoubleStringTuple.getComponents(boolean copy)
Create, if needed, and return the component array. |
Data |
ShadowType.getData()
|
Data |
RemoteDataReferenceImpl.getData()
return referenced Data object, but if Data is a FieldImpl return a RemoteFieldImpl referencing Data to avoid copying entire FieldImpl between JVMs |
Data |
DataReferenceImpl.getData()
|
Data |
DataReference.getData()
|
Data |
DataDisplayLink.getData()
|
Data |
RemoteFieldImpl.getSample(int index)
|
Data |
ImageFlatField.getSample(int index)
|
Data |
FlatField.getSample(int index)
Get the range value at the index-th sample. |
Data |
FieldImpl.getSample(int index)
Get the range value at the index-th sample. |
Data |
Field.getSample(int index)
get the range value at the index-th sample |
Data |
FlatField.getSample(int index,
boolean metadataOnly)
A stub routine which simply invokes getSample to override
FieldImpl.getSample |
Data |
FieldImpl.getSample(int index,
boolean metadataOnly)
Get the metadata for the range value at the index-th sample. |
Data |
RemoteDataImpl.log()
call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.log()
call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.log()
call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.log(int sampling_mode,
int error_mode)
call unary() to take the log of this |
Data |
DataImpl.log(int sampling_mode,
int error_mode)
call unary() to take the log of this |
Data |
Data.log(int sampling_mode,
int error_mode)
call unary() to take the log of this |
Data |
RemoteDataImpl.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
DataImpl.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
Data.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
RemoteDataImpl.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
DataImpl.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
Data.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
TupleType.missingData()
|
Data |
TextType.missingData()
|
Data |
SetType.missingData()
|
Data |
RealType.missingData()
|
Data |
RealTupleType.missingData()
|
abstract Data |
MathType.missingData()
returns a missing Data object for any MathType |
Data |
FunctionType.missingData()
|
Data |
RemoteDataImpl.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
DataImpl.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
Data.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
RemoteDataImpl.negate()
call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.negate()
call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.negate()
call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.negate(int sampling_mode,
int error_mode)
call unary() to negate this |
Data |
DataImpl.negate(int sampling_mode,
int error_mode)
call unary() to negate this |
Data |
Data.negate(int sampling_mode,
int error_mode)
call unary() to negate this |
Data |
RemoteDataImpl.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
Data |
DataImpl.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
Data |
Data.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
Data |
RemoteDataImpl.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
Data |
DataImpl.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
Data |
Data.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
Data |
RemoteDataImpl.rint()
call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.rint()
call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.rint()
call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.rint(int sampling_mode,
int error_mode)
call unary() to take the rint (essentially round) of this |
Data |
DataImpl.rint(int sampling_mode,
int error_mode)
call unary() to take the rint (essentially round) of this |
Data |
Data.rint(int sampling_mode,
int error_mode)
call unary() to take the rint (essentially round) of this |
Data |
RemoteDataImpl.round()
call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.round()
call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.round()
call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.round(int sampling_mode,
int error_mode)
call unary() to take the round of this |
Data |
DataImpl.round(int sampling_mode,
int error_mode)
call unary() to take the round of this |
Data |
Data.round(int sampling_mode,
int error_mode)
call unary() to take the round of this |
Data |
RemoteDataImpl.sin()
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.sin()
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.sin()
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.sin(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees |
Data |
DataImpl.sin(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees |
Data |
Data.sin(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming radian Units unless this actual Units are degrees |
Data |
RemoteDataImpl.sinDegrees()
call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.sinDegrees()
call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.sinDegrees()
call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.sinDegrees(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming degree Units unless this actual Units are radians |
Data |
DataImpl.sinDegrees(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming degree Units unless this actual Units are radians |
Data |
Data.sinDegrees(int sampling_mode,
int error_mode)
call unary() to take the sin of this assuming degree Units unless this actual Units are radians |
Data |
RemoteDataImpl.sqrt()
call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.sqrt()
call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.sqrt()
call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.sqrt(int sampling_mode,
int error_mode)
call unary() to take the square root of this |
Data |
DataImpl.sqrt(int sampling_mode,
int error_mode)
call unary() to take the square root of this |
Data |
Data.sqrt(int sampling_mode,
int error_mode)
call unary() to take the square root of this |
Data |
RemoteDataImpl.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Data |
DataImpl.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Data |
Data.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Data |
RemoteDataImpl.tan()
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.tan()
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.tan()
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.tan(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees |
Data |
DataImpl.tan(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees |
Data |
Data.tan(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming radian Units unless this actual Units are degrees |
Data |
RemoteDataImpl.tanDegrees()
call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.tanDegrees()
call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.tanDegrees()
call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.tanDegrees(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming degree Units unless this actual Units are radians |
Data |
DataImpl.tanDegrees(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming degree Units unless this actual Units are radians |
Data |
Data.tanDegrees(int sampling_mode,
int error_mode)
call unary() to take the tan of this assuming degree Units unless this actual Units are radians |
Data |
Text.unary(int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.unary(int op,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this (AdaptedData). |
Data |
DataImpl.unary(int op,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this. |
Data |
Data.unary(int op,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this. |
Data |
TupleIface.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Tuple.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Set.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this (AdaptedData). |
Data |
RealTuple.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Real.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
unary function on a Real; override some trig functions based on Unit; transcental functions destroy dimensionfull Unit |
Data |
FlatField.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
Return new FlatField with value 'this op'. |
Data |
FieldImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new Field with value 'op this' |
Data |
DataImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this. |
Data |
Data.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise unary operation applied to this. |
Methods in visad with parameters of type Data | |
---|---|
Data |
DataImpl.__add__(Data data)
A wrapper around add for JPython |
Data |
DataImpl.__div__(Data data)
A wrapper around divide for JPython |
Data |
DataImpl.__mod__(Data data)
A wrapper around remainder for JPython |
Data |
DataImpl.__mul__(Data data)
A wrapper around multiply for JPython |
Data |
DataImpl.__pow__(Data data)
A wrapper around pow for JPython |
void |
FieldImpl.__setitem__(int index,
Data data)
A wrapper around setSample for JPython. |
Data |
DataImpl.__sub__(Data data)
A wrapper around subtract for JPython |
Data |
RemoteDataImpl.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.add(Data data)
call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
DataImpl.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
Data.add(Data data,
int sampling_mode,
int error_mode)
call binary() to add data to this |
Data |
TupleIface.adjustSamplingError(Data error,
int error_mode)
return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
Tuple.adjustSamplingError(Data error,
int error_mode)
return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
RemoteDataImpl.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
RealIface.adjustSamplingError(Data error,
int error_mode)
Returns a clone, except that the ErrorEstimate of the clone is adjusted for a given error mode and uncertainty. |
Data |
Real.adjustSamplingError(Data error,
int error_mode)
return a Real that clones this, except its ErrorEstimate is adjusted for the sampling error in error |
Data |
FlatField.adjustSamplingError(Data error,
int error_mode)
return a FlatField that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
FieldImpl.adjustSamplingError(Data error,
int error_mode)
return a Field that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error |
Data |
DataImpl.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
Data.adjustSamplingError(Data error,
int error_mode)
return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode |
Data |
RemoteDataImpl.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atan2(Data data)
call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
DataImpl.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
Data.atan2(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing radian Units |
Data |
RemoteDataImpl.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.atan2Degrees(Data data)
call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
DataImpl.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
Data.atan2Degrees(Data data,
int sampling_mode,
int error_mode)
call binary() to take the atan of this by data producing degree Units |
Data |
Text.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this (AdaptedData) and data. |
Data |
DataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
Data.binary(Data data,
int op,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
TupleIface.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Tuple.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this (AdaptedData) and data. |
Data |
RealTuple.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
Real.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
FlatField.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Return new Field with value 'this op data'. |
Data |
FieldImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new Field with value 'this op data'; test for various relations between types of this and data |
Data |
DataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
Data |
Data.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
Pointwise binary operation between this and data. |
static TupleType |
Tuple.buildTupleType(Data[] datums)
Make a TupleType for an array of Data |
DataShadow |
DataRenderer.computeRanges(Data data,
ShadowType type,
DataShadow shadow)
Compute ranges of values for each RealType in DisplayImpl.RealTypeVector. |
Data |
RemoteDataImpl.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.divide(Data data)
call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
Data |
DataImpl.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
Data |
Data.divide(Data data,
int sampling_mode,
int error_mode)
call binary() to divide this by data |
boolean |
ShadowTupleType.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer,
ShadowType shadow_api)
transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
boolean |
ShadowTextType.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer,
ShadowType shadow_api)
transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
boolean |
ShadowRealType.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer,
ShadowType shadow_api)
transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
boolean |
ShadowFunctionOrSetType.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer,
ShadowType shadow_api)
transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
static Tuple |
Tuple.makeTuple(Data[] datums)
Create a Tuple from an array of Data objects. |
Data |
RemoteDataImpl.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.max(Data data)
call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
DataImpl.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
Data.max(Data data,
int sampling_mode,
int error_mode)
call binary() to take the max of this and data |
Data |
RemoteDataImpl.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.min(Data data)
call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
DataImpl.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
Data.min(Data data,
int sampling_mode,
int error_mode)
call binary() to take the min of this and data |
Data |
RemoteDataImpl.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.multiply(Data data)
call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
DataImpl.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
Data.multiply(Data data,
int sampling_mode,
int error_mode)
call binary() to multiply this by data |
Data |
RemoteDataImpl.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.pow(Data data)
call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
Data |
DataImpl.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
Data |
Data.pow(Data data,
int sampling_mode,
int error_mode)
call binary() to raise this to data power |
boolean |
ShadowType.recurseComponent(int i,
Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowType.recurseRange(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
Data |
RemoteDataImpl.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.remainder(Data data)
call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
Data |
DataImpl.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
Data |
Data.remainder(Data data,
int sampling_mode,
int error_mode)
call binary() to take the remainder of this divided by data |
void |
RemoteDataReferenceImpl.setData(Data d)
set this RemoteDataReferenceImpl to refer to given Data |
void |
DataReferenceImpl.setData(Data d)
Sets the Data object to which this instance refers. |
void |
DataReference.setData(Data d)
set reference to data, replacing any currently referenced Data object; if this is local (i.e., an instance of DataReferenceImpl) then the Data argument must also be local (i.e., an instance of DataImpl); if this is Remote (i.e., an instance of RemoteDataReference) then a local Data argument (i.e., an instance of DataImpl) will be passed by copy and a remote Data argument (i.e., an instance of RemoteData) will be passed by remote reference; invokes d.addReference(DataReference r) |
void |
RemoteFieldImpl.setSample(int index,
Data range)
|
void |
FlatField.setSample(int index,
Data range)
Set the range value at the index-th sample |
void |
FieldImpl.setSample(int index,
Data range)
Set the range value at the index-th sample; makes a local copy |
void |
Field.setSample(int index,
Data range)
set the range value at the index-th sample |
void |
RemoteFieldImpl.setSample(int index,
Data range,
boolean copy)
|
void |
FlatField.setSample(int index,
Data range,
boolean copy)
Set the range value at the index-th sample |
void |
FieldImpl.setSample(int index,
Data range,
boolean copy)
Set the range value at the index-th sample |
void |
Field.setSample(int index,
Data range,
boolean copy)
set the range value at the index-th sample |
void |
FieldImpl.setSample(int index,
Data range,
boolean copy,
boolean checkRangeType)
Set the range value at the index-th sample |
void |
RemoteFieldImpl.setSample(RealTuple domain,
Data range)
|
void |
FieldImpl.setSample(RealTuple domain,
Data range)
|
void |
Field.setSample(RealTuple domain,
Data range)
set the range value at the sample nearest to domain |
void |
RemoteFieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
|
void |
FieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
set the range value at the sample nearest to domain |
void |
Field.setSample(RealTuple domain,
Data range,
boolean copy)
set the range value at the sample nearest to domain |
void |
RemoteFieldImpl.setSamples(Data[] range,
boolean copy)
methods adapted from Field |
void |
ImageFlatField.setSamples(Data[] range,
boolean copy)
|
void |
FlatField.setSamples(Data[] range,
boolean copy)
set the range values of the function; the order of range values must be the same as the order of domain indices in the DomainSet; copy argument included for consistency with Field, but ignored |
void |
FieldImpl.setSamples(Data[] range,
boolean copy)
Set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true; |
void |
Field.setSamples(Data[] range,
boolean copy)
set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true; should use same MathType object in each Data object in range array |
void |
FieldImpl.setSamples(Data[] range,
boolean copy,
boolean checkAllRangeTypes)
Set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true; should use same MathType object in each Data object in range array |
Data |
RemoteDataImpl.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
DataImpl.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
Data.subtract(Data data)
call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS) |
Data |
RemoteDataImpl.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Data |
DataImpl.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Data |
Data.subtract(Data data,
int sampling_mode,
int error_mode)
call binary() to subtract data from this |
Constructors in visad with parameters of type Data | |
---|---|
DoubleStringTuple(TupleType type,
Data[] prototypes,
double[] doubles,
String[] strings,
Unit[] units)
|
|
DoubleTuple(RealTupleType type,
Data[] prototypes,
double[] doubles,
Unit[] units)
|
|
Tuple(Data[] datums)
Construct a Tuple object from an array of Data objects; this constructs its MathType from the MathTypes of the data array |
|
Tuple(Data[] datums,
boolean copy)
Construct a Tuple object from an array of Data objects; this constructs its MathType from the MathTypes of the data array |
|
Tuple(TupleType type,
Data[] datums)
Construct a Tuple object from a type and an array of Data objects |
|
Tuple(TupleType type,
Data[] datums,
boolean copy)
Construct a Tuple object from a type and an array of Data objects |
|
Tuple(TupleType type,
Data[] datums,
boolean copy,
boolean checkType)
Construct a Tuple object from a type and an array of Data objects |
Uses of Data in visad.bom |
---|
Methods in visad.bom with parameters of type Data | |
---|---|
boolean |
ShadowTextureFillSetTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowImageFunctionTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowImageByRefFunctionTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowCurveSetTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
Transform data into a Java3D scene graph. |
boolean |
ShadowCurveSetTypeJ2D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
Transform data into a Java2D scene graph. |
void |
ShadowImageByRefFunctionTypeJ3D.makeColorBytes(Data data,
ScalarMap cmap,
ScalarMap[] cmaps,
float constant_alpha,
ShadowRealType[] RangeComponents,
int color_length,
int domain_length,
int[] permute,
byte[] byteData,
int data_width,
int data_height,
int tile_width,
int tile_height,
int xStart,
int yStart,
int texture_width,
int texture_height)
|
void |
ShadowImageByRefFunctionTypeJ3D.makeColorBytesDriver(Data imgFlatField,
ScalarMap cmap,
ScalarMap[] cmaps,
float constant_alpha,
ShadowRealType[] RangeComponents,
int color_length,
int domain_length,
int[] permute,
int data_width,
int data_height,
int imageType,
VisADImageTile tile,
int image_index)
|
Uses of Data in visad.cluster |
---|
Subinterfaces of Data in visad.cluster | |
---|---|
interface |
RemoteClientData
RemoteClientData is the interface for cluster client VisAD data objects. |
interface |
RemoteClientField
RemoteClientField is the interface for cluster client VisAD Field data objects that are not partitioned over nodes. |
interface |
RemoteClientPartitionedField
RemoteClientPartitionedField is the interface for cluster client VisAD Field data objects that are partitioned over nodes. |
interface |
RemoteClientTuple
RemoteClientTuple is the interface for cluster client VisAD Tuple data objects. |
interface |
RemoteClusterData
RemoteClusterData is the interface for cluster client and node Data. |
interface |
RemoteNodeData
RemoteNodeData is the interface for cluster node VisAD data objects. |
interface |
RemoteNodeField
RemoteNodeField is the interface for cluster node VisAD Field data objects that are not paritioned. |
interface |
RemoteNodePartitionedField
RemoteNodePartitionedField is the interface for cluster node VisAD Field data objects that are paritioned. |
interface |
RemoteNodeTuple
RemoteNodeTuple is the interface for cluster node VisAD Tuple data objects. |
Classes in visad.cluster that implement Data | |
---|---|
class |
RemoteClientDataImpl
RemoteClientData is the class for cluster client VisAD data objects. |
class |
RemoteClientFieldImpl
RemoteClientFieldImpl is the class for cluster client VisAD Field data objects. |
class |
RemoteClientPartitionedFieldImpl
RemoteClientPartitionedFieldImpl is the class for cluster client VisAD Field data objects. |
class |
RemoteClientTupleImpl
RemoteClientTupleImpl is the class for cluster client VisAD Tuple data objects. |
class |
RemoteClusterDataImpl
RemoteClusterDataImpl is the super class for cluster client and node Data. |
class |
RemoteNodeDataImpl
RemoteNodeData is the class for cluster node VisAD data objects. |
class |
RemoteNodeFieldImpl
RemoteNodeFieldImpl is the class for cluster node VisAD Field data objects. |
class |
RemoteNodePartitionedFieldImpl
RemoteNodePartitionedFieldImpl is the class for cluster node VisAD Field data objects that are paritioned. |
class |
RemoteNodeTupleImpl
RemoteNodeTupleImpl is the class for cluster client VisAD Tuple data objects. |
class |
UserDummyDataImpl
RemoteClientData is the class for cluster client VisAD data objects. |
Methods in visad.cluster that return Data | |
---|---|
Data |
RemoteNodeTupleImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteNodeFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientTupleImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
UserDummyDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
UserDummyDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.derivative(int error_mode)
|
Data |
RemoteNodeFieldImpl.derivative(int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.derivative(int error_mode)
|
Data |
RemoteClientFieldImpl.derivative(int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
RemoteNodeFieldImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
RemoteClientFieldImpl.derivative(MathType[] derivType_s,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
RemoteNodeFieldImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
RemoteClientFieldImpl.derivative(RealTuple location,
RealType[] d_partial_s,
MathType[] derivType_s,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.evaluate(Real domain)
|
Data |
RemoteNodeFieldImpl.evaluate(Real domain)
|
Data |
RemoteClientPartitionedFieldImpl.evaluate(Real domain)
|
Data |
RemoteClientFieldImpl.evaluate(Real domain)
|
Data |
RemoteNodePartitionedFieldImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteNodeFieldImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientFieldImpl.evaluate(Real domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.evaluate(RealTuple domain)
|
Data |
RemoteNodeFieldImpl.evaluate(RealTuple domain)
|
Data |
RemoteClientPartitionedFieldImpl.evaluate(RealTuple domain)
|
Data |
RemoteClientFieldImpl.evaluate(RealTuple domain)
|
Data |
RemoteNodePartitionedFieldImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteNodeFieldImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientFieldImpl.evaluate(RealTuple domain,
int sampling_mode,
int error_mode)
|
Data |
RemoteNodeTupleImpl.getComponent(int i)
|
Data |
RemoteClientTupleImpl.getComponent(int i)
|
Data |
RemoteNodePartitionedFieldImpl.getSample(int index)
|
Data |
RemoteNodeFieldImpl.getSample(int index)
|
Data |
RemoteClientPartitionedFieldImpl.getSample(int index)
|
Data |
RemoteClientFieldImpl.getSample(int index)
|
Data |
UserDummyDataImpl.unary(int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.unary(int op,
int sampling_mode,
int error_mode)
|
Data |
UserDummyDataImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Methods in visad.cluster with parameters of type Data | |
---|---|
protected String |
TestWRFCluster.addData(int id,
Data data,
ConstantMap[] cmaps,
String source,
int type,
boolean notify)
override method from BasicSSCell |
protected String |
TestSSCluster.addData(int id,
Data data,
ConstantMap[] cmaps,
String source,
int type,
boolean notify)
override method from BasicSSCell |
protected String |
TestProxyCluster.addData(int id,
Data data,
ConstantMap[] cmaps,
String source,
int type,
boolean notify)
override method from BasicSSCell |
Data |
RemoteNodeTupleImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteNodePartitionedFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteNodeFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientTupleImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientPartitionedFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
RemoteClientFieldImpl.adjustSamplingError(Data error,
int error_mode)
|
Data |
UserDummyDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
UserDummyDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
RemoteClientDataImpl.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
DataShadow |
UserRendererJ3D.computeRanges(Data data,
ShadowType type,
DataShadow shadow)
|
DataShadow |
ClientRendererJ3D.computeRanges(Data data,
ShadowType type,
DataShadow shadow)
|
boolean |
ShadowNodeFunctionTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
void |
RemoteNodePartitionedFieldImpl.setSample(int index,
Data range)
|
void |
RemoteNodeFieldImpl.setSample(int index,
Data range)
|
void |
RemoteClientPartitionedFieldImpl.setSample(int index,
Data range)
|
void |
RemoteClientFieldImpl.setSample(int index,
Data range)
|
void |
RemoteNodePartitionedFieldImpl.setSample(int index,
Data range,
boolean copy)
|
void |
RemoteNodeFieldImpl.setSample(int index,
Data range,
boolean copy)
|
void |
RemoteClientPartitionedFieldImpl.setSample(int index,
Data range,
boolean copy)
|
void |
RemoteClientFieldImpl.setSample(int index,
Data range,
boolean copy)
|
void |
RemoteNodePartitionedFieldImpl.setSample(RealTuple domain,
Data range)
|
void |
RemoteNodeFieldImpl.setSample(RealTuple domain,
Data range)
|
void |
RemoteClientPartitionedFieldImpl.setSample(RealTuple domain,
Data range)
|
void |
RemoteClientFieldImpl.setSample(RealTuple domain,
Data range)
|
void |
RemoteNodePartitionedFieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
|
void |
RemoteNodeFieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
|
void |
RemoteClientPartitionedFieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
|
void |
RemoteClientFieldImpl.setSample(RealTuple domain,
Data range,
boolean copy)
|
void |
RemoteNodePartitionedFieldImpl.setSamples(Data[] range,
boolean copy)
|
void |
RemoteNodeFieldImpl.setSamples(Data[] range,
boolean copy)
|
void |
RemoteClientPartitionedFieldImpl.setSamples(Data[] range,
boolean copy)
|
void |
RemoteClientFieldImpl.setSamples(Data[] range,
boolean copy)
|
Constructors in visad.cluster with parameters of type Data | |
---|---|
RemoteClientTupleImpl(Data[] datums)
must call setupClusterData after constructor to finish the "construction" |
|
RemoteNodeTupleImpl(Data[] datums)
must call setupClusterData after constructor to finish the "construction" |
Uses of Data in visad.data |
---|
Classes in visad.data that implement Data | |
---|---|
class |
AreaImageCacheAdapter
Adapts a FlatField backed by a AreaImageAccessor to work
with a FlatFieldCache . |
class |
CachedFlatField
This is a FloatField that caches to disk its float array. |
class |
FileField
|
class |
FileFlatField
|
Methods in visad.data that return Data | |
---|---|
Data |
FileFlatField.adjustSamplingError(Data error,
int error_mode)
|
Data |
AreaImageCacheAdapter.adjustSamplingError(Data error,
int error_mode)
|
Data |
FileFlatField.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
FileFlatField.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
FileFlatField.getSample(int index)
|
Data |
FileField.getSample(int index)
|
Data |
CachedFlatField.getSample(int index)
Get the range value at the index-th sample. |
Data |
AreaImageCacheAdapter.getSample(int index)
|
Data |
FileFlatField.unary(int op,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.unary(int op,
int sampling_mode,
int error_mode)
|
Data |
FileFlatField.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Methods in visad.data with parameters of type Data | |
---|---|
void |
Repository.add(String id,
Data data,
boolean replace)
Add a data object to an existing data object in the repository. |
void |
FunctionFormFamily.add(String id,
Data data,
boolean replace)
Add data to an existing data object using the first appropriate Form. |
abstract void |
FormNode.add(String id,
Data data,
boolean replace)
Add data to an existing data object. |
void |
FormFamily.add(String id,
Data data,
boolean replace)
Add data to an existing data object. |
Data |
FileFlatField.adjustSamplingError(Data error,
int error_mode)
|
Data |
AreaImageCacheAdapter.adjustSamplingError(Data error,
int error_mode)
|
Data |
FileFlatField.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.binary(Data data,
int op,
int sampling_mode,
int error_mode)
|
Data |
FileFlatField.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
Data |
AreaImageCacheAdapter.binary(Data data,
int op,
MathType new_type,
int sampling_mode,
int error_mode)
|
static DataNode |
DataNode.create(Data data)
Factory method for creating an instance of the appropriate type. |
void |
LinkedDataSource.dataChanged(Data data)
Update the data to which this LinkedDataSource is linked. |
FormNode |
Repository.getForms(Data data)
Return the forms of data that are both supported by this repository and compatible with a data object. |
abstract FormNode |
FormNode.getForms(Data data)
Return the data forms that are compatible with a data object. |
FormNode |
FormFamily.getForms(Data data)
Return the data forms that are compatible with a data object. |
void |
EmptyDataProcessor.processTuple(TupleType type,
Data[] components,
Tuple t,
Object token)
|
void |
DataProcessor.processTuple(TupleType type,
Data[] components,
Tuple t,
Object token)
|
abstract void |
BaseDataProcessor.processTuple(TupleType type,
Data[] components,
Tuple t,
Object token)
|
void |
Repository.save(String id,
Data data,
boolean replace)
Save a data object in the first compatible data form. |
void |
FunctionFormFamily.save(String id,
Data data,
boolean replace)
Save a Data object using the first appropriate Form. |
abstract void |
FormNode.save(String id,
Data data,
boolean replace)
Save a VisAD data object in this form. |
void |
FormFamily.save(String id,
Data data,
boolean replace)
Save a VisAD data object. |
void |
Repository.save(String id,
Data data,
FormNode form,
boolean replace)
Save a data object in a particular form. |
void |
FileFlatField.setSample(int index,
Data range)
|
void |
FileField.setSample(int index,
Data range)
|
void |
AreaImageCacheAdapter.setSample(int index,
Data range)
|
void |
FileFlatField.setSample(int index,
Data range,
boolean copy)
|
void |
AreaImageCacheAdapter.setSample(int index,
Data range,
boolean copy)
|
void |
FileFlatField.setSample(RealTuple domain,
Data range)
|
void |
AreaImageCacheAdapter.setSample(RealTuple domain,
Data range)
|
abstract void |
FileAccessor.writeFile(int[] fileLocations,
Data range)
|
Uses of Data in visad.data.amanda |
---|
Fields in visad.data.amanda declared as Data | |
---|---|
static Data |
Event.missing
|
Methods in visad.data.amanda that return Data | |
---|---|
Data |
Tracks.makeData()
|
Methods in visad.data.amanda with parameters of type Data | |
---|---|
void |
F2000Form.add(String id,
Data data,
boolean replace)
|
FormNode |
F2000Form.getForms(Data data)
|
void |
F2000Form.save(String id,
Data data,
boolean replace)
|
Uses of Data in visad.data.bio |
---|
Methods in visad.data.bio with parameters of type Data | |
---|---|
void |
LociForm.add(String id,
Data data,
boolean replace)
Adds data to an existing image file. |
FormNode |
LociForm.getForms(Data data)
Returns the data forms that are compatible with a data object. |
void |
LociForm.save(String id,
Data data,
boolean replace)
Saves a VisAD Data object at the given location. |
Uses of Data in visad.data.dods |
---|
Methods in visad.data.dods with parameters of type Data | |
---|---|
void |
DODSForm.add(String id,
Data data,
boolean replace)
Throws an exception. |
FormNode |
DODSForm.getForms(Data data)
Returns null . |
void |
DODSForm.save(String id,
Data data,
boolean replace)
Throws an exception. |
void |
VectorAccessor.writeFile(int[] fileLocation,
Data range)
Throws a VisADError. |
void |
SequenceVariableAdapter.SequenceAccessor.writeFile(int[] fileLocation,
Data range)
Throws a VisADError. |
void |
GridVariableAdapter.GridAccessor.writeFile(int[] fileLocation,
Data range)
Throws a VisADError. |
Uses of Data in visad.data.fits |
---|
Methods in visad.data.fits with parameters of type Data | |
---|---|
void |
FitsForm.add(String id,
Data data,
boolean replace)
|
FormNode |
FitsForm.getForms(Data data)
|
void |
FitsForm.save(String id,
Data data,
boolean replace)
|
void |
FitsAdapter.save(String name,
Data data,
boolean replace)
|
boolean |
TourGuide.show(Data data,
Tourist tourist,
int depth)
|
Constructors in visad.data.fits with parameters of type Data | |
---|---|
FitsTourGuide(Data data,
Tourist tourist)
|
Uses of Data in visad.data.gif |
---|
Methods in visad.data.gif with parameters of type Data | |
---|---|
void |
GIFForm.add(String id,
Data data,
boolean replace)
|
FormNode |
GIFForm.getForms(Data data)
|
void |
GIFForm.save(String id,
Data data,
boolean replace)
|
Uses of Data in visad.data.gis |
---|
Methods in visad.data.gis with parameters of type Data | |
---|---|
void |
UsgsDemForm.add(String id,
Data data,
boolean replace)
Add data to an existing data object |
void |
ArcAsciiGridForm.add(String id,
Data data,
boolean replace)
Add data to an existing data object |
FormNode |
UsgsDemForm.getForms(Data data)
Return the data forms that are compatible with a data object |
FormNode |
ArcAsciiGridForm.getForms(Data data)
Return the data forms that are compatible with a data object |
void |
UsgsDemForm.save(String id,
Data data,
boolean replace)
Save a VisAD data object in this form |
void |
ArcAsciiGridForm.save(String id,
Data data,
boolean replace)
Save a VisAD data object in this form |
Uses of Data in visad.data.hdf5 |
---|
Methods in visad.data.hdf5 with parameters of type Data | |
---|---|
void |
HDF5Form.add(String id,
Data data,
boolean replace)
|
FormNode |
HDF5Form.getForms(Data data)
|
void |
HDF5Form.save(String filename,
Data data,
boolean replace)
|
Uses of Data in visad.data.hdfeos |
---|
Methods in visad.data.hdfeos with parameters of type Data | |
---|---|
void |
HdfeosForm.add(String id,
Data data,
boolean replace)
|
FormNode |
HdfeosForm.getForms(Data data)
|
void |
HdfeosForm.save(String id,
Data data,
boolean replace)
|
void |
HdfeosAccessor.writeFile(int[] fileLocations,
Data range)
|
Uses of Data in visad.data.hrit |
---|
Methods in visad.data.hrit with parameters of type Data | |
---|---|
void |
HRITForm.add(String id,
Data data,
boolean replace)
This has not been implemented |
FormNode |
HRITForm.getForms(Data data)
not implemented yet |
void |
HRITForm.save(String id,
Data data,
boolean replace)
save the file back to disk This has not been implemented yet |
Uses of Data in visad.data.jai |
---|
Methods in visad.data.jai with parameters of type Data | |
---|---|
void |
JAIForm.add(String id,
Data data,
boolean replace)
Adds data to an existing JAI image file. |
FormNode |
JAIForm.getForms(Data data)
|
void |
JAIForm.save(String id,
Data data,
boolean replace)
Saves a VisAD Data object to a JAI image format at the given location. |
Uses of Data in visad.data.mcidas |
---|
Methods in visad.data.mcidas with parameters of type Data | |
---|---|
void |
PointForm.add(String id,
Data data,
boolean replace)
This has not been implemented |
void |
MapForm.add(String id,
Data data,
boolean replace)
Add data to an existing data object |
void |
AreaForm.add(String id,
Data data,
boolean replace)
This has not been implemented |
FormNode |
PointForm.getForms(Data data)
not implemented yet |
FormNode |
MapForm.getForms(Data data)
Return the data forms that are compatible with a data object |
FormNode |
AreaForm.getForms(Data data)
not implemented yet |
void |
PointForm.save(String id,
Data data,
boolean replace)
save the file back to disk This has not been implemented yet |
void |
MapForm.save(String id,
Data data,
boolean replace)
Save a VisAD data object in this form |
void |
AreaForm.save(String id,
Data data,
boolean replace)
save the file back to disk This has not been implemented yet |
Uses of Data in visad.data.netcdf |
---|
Methods in visad.data.netcdf with parameters of type Data | |
---|---|
void |
Plain.add(String id,
Data data,
boolean replace)
Add data to an existing data object. |
FormNode |
Plain.getForms(Data data)
Return the data forms that are compatible with a data object. |
void |
Plain.save(String path,
Data data,
boolean replace)
Save a VisAD data object in this form. |
Uses of Data in visad.data.netcdf.in |
---|
Methods in visad.data.netcdf.in with parameters of type Data | |
---|---|
void |
FileDataFactory.netCDFFlatFieldAccessor.writeFile(int[] fileLocation,
Data range)
Does nothing. |
Uses of Data in visad.data.netcdf.out |
---|
Methods in visad.data.netcdf.out with parameters of type Data | |
---|---|
protected void |
VisADAdapter.visit(Data data,
visad.data.netcdf.out.VisADAccessor outerAccessor)
Visit a VisAD data object. |
Constructors in visad.data.netcdf.out with parameters of type Data | |
---|---|
VisADAdapter(Data data)
Construct from a generic VisAD data object. |
Uses of Data in visad.data.text |
---|
Methods in visad.data.text that return Data | |
---|---|
static Data |
TextAdapter.processFile(String file)
Read in the given file and return the processed data |
Methods in visad.data.text with parameters of type Data | |
---|---|
void |
TextForm.add(String id,
Data data,
boolean replace)
|
FormNode |
TextForm.getForms(Data data)
|
void |
TextAdapter.StreamProcessor.processValues(Data[] tuple)
|
void |
TextForm.save(String id,
Data data,
boolean replace)
|
Uses of Data in visad.data.tiff |
---|
Methods in visad.data.tiff with parameters of type Data | |
---|---|
void |
LegacyTiffForm.add(String id,
Data data,
boolean replace)
Deprecated. Adds data to an existing TIFF file. |
FormNode |
LegacyTiffForm.getForms(Data data)
Deprecated. |
void |
LegacyTiffForm.save(String id,
Data data,
boolean replace)
Deprecated. Saves a VisAD Data object to an uncompressed TIFF file. |
Uses of Data in visad.data.vis5d |
---|
Methods in visad.data.vis5d with parameters of type Data | |
---|---|
void |
Vis5DTopoForm.add(String id,
Data data,
boolean replace)
Add data to an existing data object. |
void |
Vis5DForm.add(String id,
Data data,
boolean replace)
|
FormNode |
Vis5DTopoForm.getForms(Data data)
Return the data forms that are compatible with a data object. |
FormNode |
Vis5DForm.getForms(Data data)
|
void |
Vis5DTopoForm.save(String id,
Data data,
boolean replace)
Save a VisAD data object in this form. |
void |
Vis5DForm.save(String id,
Data data,
boolean replace)
|
void |
Vis5DFileAccessor.writeFile(int[] fileLocations,
Data range)
|
Uses of Data in visad.data.visad |
---|
Methods in visad.data.visad with parameters of type Data | |
---|---|
void |
VisADForm.add(String id,
Data data,
boolean replace)
|
FormNode |
VisADForm.getForms(Data data)
|
void |
BinaryWriter.processTuple(TupleType type,
Data[] components,
Tuple t,
Object token)
|
void |
BinarySizer.processTuple(TupleType type,
Data[] components,
Tuple t,
Object token)
|
void |
VisADForm.save(String id,
Data data,
boolean replace)
Save a Data object. |
void |
VisADForm.save(String id,
Data data,
boolean replace,
boolean bigObject)
Save a Data object. |
Uses of Data in visad.data.visad.object |
---|
Methods in visad.data.visad.object that return Data | |
---|---|
static Data[] |
BinaryDataArray.read(BinaryReader reader)
|
Methods in visad.data.visad.object with parameters of type Data | |
---|---|
static int |
BinaryTuple.computeBytes(Data[] components)
|
static int |
BinaryDataArray.computeBytes(Data[] array)
|
static void |
BinaryDataArray.write(BinaryWriter writer,
Data[] array,
Object token)
|
static void |
BinaryTuple.write(BinaryWriter writer,
TupleType type,
Data[] components,
Tuple t,
Object token)
|
Uses of Data in visad.formula |
---|
Methods in visad.formula that return Data | |
---|---|
static Data |
FormulaUtil.brackets(Field f,
Real r)
evaluate the bracket function; e.g., A1[5] or A1[A2] |
static Data |
FormulaUtil.derive(Function f,
VRealType rt)
evaluate the derive function |
static Data |
FormulaUtil.dot(TupleIface t,
Real r)
evaluate the dot operator |
static Data |
FormulaUtil.extract(Field f,
Real r)
evaluate the extract function |
static Data |
FormulaUtil.implicit(Function f,
Real r)
evaluate implicit function syntax; e.g., A1(5) or A1(A2) |
static Data |
FormulaUtil.link(VMethod m,
Object[] o)
evaluate the link function |
Uses of Data in visad.georef |
---|
Subinterfaces of Data in visad.georef | |
---|---|
interface |
EarthLocation
Interface for specifying a point on the earth's surface in terms of latitude, longitude and altitude above sea level. |
interface |
LatLonPoint
Interface for supporting latitude/longitude points. |
interface |
NamedLocation
An interface for a named earth location. |
interface |
NavigatedField
A particular type of Field whose Domain Set contains values of Latitude and Longitude, or whose CoordinateSystem can transform to RealType.Latitude and RealType.Longitude |
Classes in visad.georef that implement Data | |
---|---|
class |
EarthLocationLite
This provides a LoCal EarthLocation that is much faster to create than the EarthLocationTuple. |
class |
EarthLocationTuple
RealTuple implementation of EarthLocation for representing a location on the earth's surface in terms of latitude, longitude and altitude above sea level. |
class |
LatLonTuple
RealTuple implementation of LatLonPoint for defining lat/lon points |
class |
NamedLocationTuple
Tuple implementation of NamedLocation for representing a location on the earth's surface in terms of latitude, longitude and altitude above sea level and some sort of identifier. |
class |
UTMCoordinate
RealTuple implementation of a Universal Transverse Mercator (UTM) coordinate |
Methods in visad.georef that return Data | |
---|---|
Data |
EarthLocationLite.getComponent(int i)
Get the i'th component. |
Data[] |
EarthLocationLite.getComponents(boolean copy)
Create, if needed, and return the component array. |
Uses of Data in visad.java2d |
---|
Methods in visad.java2d that return Data | |
---|---|
Data |
ShadowTypeJ2D.getData()
|
Methods in visad.java2d with parameters of type Data | |
---|---|
boolean |
ShadowTupleTypeJ2D.doTransform(VisADGroup group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a VisADSceneGraphObject; return true if need post-process |
boolean |
ShadowTextTypeJ2D.doTransform(VisADGroup group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java2D VisADSceneGraphObject; return true if need post-process |
boolean |
ShadowRealTypeJ2D.doTransform(VisADGroup group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java2D VisADSceneGraphObject; return true if need post-process |
boolean |
ShadowFunctionOrSetTypeJ2D.doTransform(VisADGroup group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a VisADSceneGraphObject; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
boolean |
ShadowTupleTypeJ2D.recurseComponent(int i,
Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowFunctionOrSetTypeJ2D.recurseRange(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
Uses of Data in visad.java3d |
---|
Methods in visad.java3d that return Data | |
---|---|
Data |
ShadowTypeJ3D.getData()
Get the data |
Methods in visad.java3d with parameters of type Data | |
---|---|
boolean |
ShadowTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java3D scene graph; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process; this is default (for ShadowTextType) |
boolean |
ShadowTupleTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java3D scene graph; return true if need post-process |
boolean |
ShadowTextTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java3D scene graph; return true if need post-process |
boolean |
ShadowRealTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java3D scene graph; return true if need post-process |
boolean |
ShadowFunctionOrSetTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
transform data into a Java3D scene graph; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process |
boolean |
ShadowAnimationFunctionTypeJ3D.doTransform(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowTupleTypeJ3D.recurseComponent(int i,
Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
boolean |
ShadowFunctionOrSetTypeJ3D.recurseRange(Object group,
Data data,
float[] value_array,
float[] default_values,
DataRenderer renderer)
|
Uses of Data in visad.jmet |
---|
Methods in visad.jmet with parameters of type Data | |
---|---|
static void |
DumpType.dumpDataType(Data d)
Decomposes a VisAD Data object and lists out information about its components. |
static void |
DumpType.dumpDataType(Data d,
OutputStream uos)
Decomposes a VisAD Data object and lists out information about its components. |
Uses of Data in visad.math |
---|
Methods in visad.math with parameters of type Data | |
---|---|
static FlatField |
FFT.backwardFT(Data[] datums)
for use by SpreadSheet only - ordinary applications should use other method signatures; invoke in SpreadSheet by: link(visad.math.FFT.backwardFT(A1)) |
static FlatField |
FFT.forwardFT(Data[] datums)
for use by SpreadSheet only - ordinary applications should use other method signatures; invoke in SpreadSheet by: link(visad.math.FFT.forwardFT(A1)) |
static FlatField |
Histogram.makeHistogram(Data[] datums)
invoke in SpreadSheet by: link(visad.math.Histogram.makeHistogram(A1, A2)) |
Uses of Data in visad.matrix |
---|
Classes in visad.matrix that implement Data | |
---|---|
class |
JamaCholeskyDecomposition
JamaCholeskyDecomposition is a VisAD wrapper for JAMA CholeskyDecompositions. |
class |
JamaEigenvalueDecomposition
JamaEigenvalueDecomposition is a VisAD wrapper for JAMA EigenvalueDecompositions. |
class |
JamaLUDecomposition
JamaLUDecomposition is a VisAD wrapper for JAMA LUDecompositions. |
class |
JamaMatrix
JamaMatrix is a VisAD wrapper for JAMA matrices. |
class |
JamaQRDecomposition
JamaQRDecomposition is a VisAD wrapper for JAMA QRDecompositions. |
class |
JamaSingularValueDecomposition
JamaSingularValueDecomposition is a VisAD wrapper for JAMA SingularValueDecompositions. |
Uses of Data in visad.meteorology |
---|
Subinterfaces of Data in visad.meteorology | |
---|---|
interface |
ImageSequence
Interface for representing a time sequence of single-banded images. |
interface |
SatelliteData
An interface for defining properties associated with satellite data. |
interface |
SingleBandedImage
An interface for representing single--banded planar satellite or radar imagery. |
Classes in visad.meteorology that implement Data | |
---|---|
class |
ImageSequenceImpl
Implementation of an ImageSequence. |
class |
NavigatedImage
An implementation for representing single-banded planar satellite or radar imagery. |
class |
SatelliteImage
An implementation for representing single-banded planar satellite that has navigation. |
class |
SingleBandedImageImpl
An implementation for representing single-banded planar satellite or radar imagery. |
Methods in visad.meteorology that return Data | |
---|---|
Data |
SingleBandedImageImpl.binary(Data data,
int op,
int samplingMode,
int errorMode)
Return the result of a binary operation between this instance and another operand. |
Data |
SingleBandedImageImpl.unary(int op,
int samplingMode,
int errorMode)
Return the result of a unary operation on this instance. |
Data |
SingleBandedImageImpl.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new SingleBandedImageImpl with value 'op this' |
Data |
SatelliteImage.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new SatelliteImage with value 'op this' |
Data |
NavigatedImage.unary(int op,
MathType new_type,
int sampling_mode,
int error_mode)
return new NavigatedImage with value 'op this' |
Methods in visad.meteorology with parameters of type Data | |
---|---|
Data |
SingleBandedImageImpl.binary(Data data,
int op,
int samplingMode,
int errorMode)
Return the result of a binary operation between this instance and another operand. |
Uses of Data in visad.python |
---|
Methods in visad.python that return Data | |
---|---|
static Data |
JPythonMethods.abs_data(Data data)
Return point-wise absolute value of data name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.abs(Data data)
Deprecated. Consider using JPythonMethods.abs_data(Data) instead. |
static Data |
JPythonMethods.acos(Data data)
Return point-wise arccosine value of data , in radians. |
static Data |
JPythonMethods.acosDegrees(Data data)
return point-wise arccosine value of data, in degrees. |
static Data |
JPythonMethods.asin(Data data)
return point-wise arcsine value of data , in radians |
static Data |
JPythonMethods.asinDegrees(Data data)
return point-wise arcsine value of data , in degrees. |
static Data |
JPythonMethods.atan(Data data)
return point-wise arctangent value of data , in radians. |
static Data |
JPythonMethods.atan2(Data data1,
Data data2)
return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2(Data data1,
double data2)
Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2(double data1,
Data data2)
Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2Degrees(Data data1,
Data data2)
return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atan2Degrees(Data data1,
double data2)
Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atan2Degrees(double data1,
Data data2)
Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atanDegrees(Data data)
return point-wise arctangent value of data , in degrees. |
static Data |
JPythonMethods.ceil(Data data)
return point-wise ceil value of data (smallest integer not less than). |
static Data |
JPythonMethods.cos(Data data)
return point-wise cosine value of data , assuming input values are
in radians unless they have units convertable with radians, in which case
those units are converted to radians |
static Data |
JPythonMethods.cosDegrees(Data data)
return point-wise cosine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
static Data |
JPythonMethods.evaluate(Field data,
double domain)
|
static Data |
JPythonMethods.evaluate(Field data,
Real domain)
Creates a VisAD Data by evaluating the Field at the point given in the domain. |
static Data |
JPythonMethods.exp(Data data)
return point-wise exp value of data . |
static Data |
JPythonMethods.floor(Data data)
return point-wise floor value of data (largest integer not greater than) |
static Data |
JPythonMethods.getNetcdfData(String filename)
Helper method to read netcdf files with possible factor |
static Data |
JPythonMethods.getNetcdfData(String filename,
String factor)
Try to create a Data object from a NetCDF file |
static Data |
JPythonMethods.log(Data data)
return point-wise log value of data |
static Data |
JPythonMethods.max_data(Data data1,
Data data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.max_data(Data data1,
double data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.max_data(double data1,
Data data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.min_data(Data data1,
Data data2)
return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.min_data(Data data1,
double data2)
return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.min_data(double data1,
Data data2)
Return point-wise minimum value of data1 and data2 . |
static Data |
JPythonMethods.rint(Data data)
return point-wise rint value of data (closest integer) |
static Data |
JPythonMethods.round(Data data)
return point-wise round value of data (closest integer). |
static Data |
JPythonMethods.sin(Data data)
return point-wise sine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians |
static Data |
JPythonMethods.sinDegrees(Data data)
return point-wise sine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
static Data |
JPythonMethods.sqrt(Data data)
return point-wise square root value of data |
static Data |
JPythonMethods.tan(Data data)
return point-wise tan value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians |
static Data |
JPythonMethods.tanDegrees(Data data)
return point-wise tangent value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
Methods in visad.python with parameters of type Data | |
---|---|
static Data |
JPythonMethods.abs_data(Data data)
Return point-wise absolute value of data name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.abs(Data data)
Deprecated. Consider using JPythonMethods.abs_data(Data) instead. |
static Data |
JPythonMethods.acos(Data data)
Return point-wise arccosine value of data , in radians. |
static Data |
JPythonMethods.acosDegrees(Data data)
return point-wise arccosine value of data, in degrees. |
static Data |
JPythonMethods.asin(Data data)
return point-wise arcsine value of data , in radians |
static Data |
JPythonMethods.asinDegrees(Data data)
return point-wise arcsine value of data , in degrees. |
static Data |
JPythonMethods.atan(Data data)
return point-wise arctangent value of data , in radians. |
static Data |
JPythonMethods.atan2(Data data1,
Data data2)
return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2(Data data1,
double data2)
Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2(double data1,
Data data2)
Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in radians. |
static Data |
JPythonMethods.atan2Degrees(Data data1,
Data data2)
return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atan2Degrees(Data data1,
double data2)
Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atan2Degrees(double data1,
Data data2)
Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in degrees. |
static Data |
JPythonMethods.atanDegrees(Data data)
return point-wise arctangent value of data , in degrees. |
static Data |
JPythonMethods.ceil(Data data)
return point-wise ceil value of data (smallest integer not less than). |
static Data |
JPythonMethods.cos(Data data)
return point-wise cosine value of data , assuming input values are
in radians unless they have units convertable with radians, in which case
those units are converted to radians |
static Data |
JPythonMethods.cosDegrees(Data data)
return point-wise cosine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
static int |
JPythonMethods.domainDimension(Data data)
Get the domain dimension of the Data object |
static RealTupleType |
JPythonMethods.domainType(Data data)
Get the domain Type for the Data object |
static String |
JPythonMethods.domainType(Data data,
int comp)
Get the name of the given component of the domain RealType. |
static void |
JPythonMethods.dumpType(Data d)
helper method for dumpMathType() only This just dumps out the MathType of the Data object. |
static void |
JPythonMethods.dumpTypes(Data d)
Helper method for the dump(Data|Math)Type() methods. |
static Data |
JPythonMethods.exp(Data data)
return point-wise exp value of data . |
static int[] |
JPythonMethods.find(Data f,
String op,
Data v)
Get a list of points where a comparison is true. |
static Data |
JPythonMethods.floor(Data data)
return point-wise floor value of data (largest integer not greater than) |
static Set |
JPythonMethods.getDomain(Data data)
Return the sampling set for the domain of the Data object |
static int |
JPythonMethods.getDomainDimension(Data data)
Get the number of domain components from a given Data object. |
static Set |
JPythonMethods.getDomainSet(Data data)
Return the sampling set for the domain of the Data object |
static int[] |
JPythonMethods.getDomainSizes(Data data)
Return the lengths of the components of the sampling set |
static RealTupleType |
JPythonMethods.getDomainType(Data data)
Get the domain Type for the Data object |
static int |
JPythonMethods.getRangeDimension(Data data)
Get the number of range components from a given Data object. |
static MathType |
JPythonMethods.getRangeType(Data data)
Get the range Type for the field |
static MathType |
JPythonMethods.getType(Data data)
Get the MathType of the named VisAD data object |
static Data |
JPythonMethods.log(Data data)
return point-wise log value of data |
static FieldImpl |
JPythonMethods.mask(Data f,
String op,
Data v)
Mask out values outside testing limits... |
static FieldImpl |
JPythonMethods.mask(FieldImpl f,
String op,
Data v)
Mask out values outside testing limits in a FieldImpl |
static FieldImpl |
JPythonMethods.mask(FieldImpl f,
String op,
Data v,
boolean useNaN)
Mask out values outside testing limits in a FieldImpl |
static Data |
JPythonMethods.max_data(Data data1,
Data data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.max_data(Data data1,
double data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.max_data(double data1,
Data data2)
Return point-wise maximum value of data1 and data2. |
static Data |
JPythonMethods.min_data(Data data1,
Data data2)
return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.min_data(Data data1,
double data2)
return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in |
static Data |
JPythonMethods.min_data(double data1,
Data data2)
Return point-wise minimum value of data1 and data2 . |
static int |
JPythonMethods.rangeDimension(Data data)
get the number of range components of the Data object |
static MathType |
JPythonMethods.rangeType(Data data)
get the range Type for the field |
static String |
JPythonMethods.rangeType(Data data,
int comp)
Get the name of the given component of the range RealType. |
static Data |
JPythonMethods.rint(Data data)
return point-wise rint value of data (closest integer) |
static Data |
JPythonMethods.round(Data data)
return point-wise round value of data (closest integer). |
static void |
JPythonMethods.saveNetcdf(String fn,
Data d)
Save the Data in a netcdf file |
static Data |
JPythonMethods.sin(Data data)
return point-wise sine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians |
static Data |
JPythonMethods.sinDegrees(Data data)
return point-wise sine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
static Data |
JPythonMethods.sqrt(Data data)
return point-wise square root value of data |
static Data |
JPythonMethods.tan(Data data)
return point-wise tan value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians |
static Data |
JPythonMethods.tanDegrees(Data data)
return point-wise tangent value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees |
static ByteArrayOutputStream |
JPythonMethods.whatType(Data d)
helper method for dumpMathType() only This just dumps out the MathType of the Data object into a ByteArrayOutputStream which is returned. |
static ByteArrayOutputStream |
JPythonMethods.whatTypes(Data d)
helper method for the dump(Data|Math)Type() methods this will list both the MathType and DataType information to a ByteArrayOutputStream which is returned. |
Uses of Data in visad.sounder |
---|
Classes in visad.sounder that implement Data | |
---|---|
class |
Sounding
Sounding is the VisAD class for atmospheric soundings. |
class |
Spectrum
Sounding is the VisAD class for atmospheric soundings. |
Uses of Data in visad.ss |
---|
Methods in visad.ss that return Data | |
---|---|
Data |
SSCellData.getData()
Gets the Data object. |
Data[] |
BasicSSCell.getData()
Gets this cell's Data objects. |
Data |
BasicSSCell.getData(String varName)
Gets this cell's Data object with the specified variable name. |
Methods in visad.ss with parameters of type Data | |
---|---|
String |
BasicSSCell.addData(Data data)
Adds a Data object to this cell, creating an associated DataReference for it. |
String |
BasicSSCell.addData(Data data,
ConstantMap[] cmaps)
Adds a Data object to this cell, creating an associated DataReference with the specified ConstantMaps for it. |
protected String |
BasicSSCell.addData(int id,
Data data,
ConstantMap[] cmaps,
String source,
int type,
boolean notify)
Adds a Data object to this cell from the given source of the specified type, creating an associated DataReference for it. |
static DataImpl |
BasicSSCell.makeLocal(Data data)
Deprecated. Use visad.DataUtility.makeLocal(data) instead. |
void |
BasicSSCell.removeData(Data data)
Removes the given Data object from this cell. |
void |
SSCellData.setData(Data data)
Sets the data. |
void |
BasicSSCell.setData(Data data)
Deprecated. Use addData(Data) instead. |
Constructors in visad.ss with parameters of type Data | |
---|---|
MappingDialog(Frame parent,
Data[] data,
ScalarMap[] startMaps,
boolean allowAlpha,
boolean allow3D)
Constructs a MappingDialog from multiple Data objects. |
|
MappingDialog(Frame parent,
Data data,
ScalarMap[] startMaps,
boolean allowAlpha,
boolean allow3D)
Constructs a MappingDialog from a single Data object. |
Uses of Data in visad.util |
---|
Methods in visad.util with parameters of type Data | |
---|---|
static ScalarMap[] |
DataUtility.convertStringToMaps(String mapString,
Data[] data,
boolean showErrors)
Converts the given map string to its corresponding array of mappings. |
static ScalarMap[] |
DataUtility.convertStringToMaps(String mapString,
Data data,
boolean showErrors)
Converts the given map string to its corresponding array of mappings. |
static TupleIface |
DataUtility.ensureTuple(Data datum)
Ensures that a Data is a Tuple. |
static FlatField[] |
DataUtility.getImageFields(Data data)
|
static int |
DataUtility.getRealTypes(Data[] data,
Vector v,
boolean keepDupl,
boolean doCoordSys)
Deprecated. Use getScalarTypes(Data[], Vector, boolean, boolean) instead. |
static int |
DataUtility.getRealTypes(Data data,
Vector v)
Deprecated. Use getScalarTypes(Data, Vector) instead. |
static int |
DataUtility.getScalarTypes(Data[] data,
Vector v,
boolean keepDupl,
boolean doCoordSys)
Obtains a Vector consisting of all ScalarTypes present in an array of Data objects' MathTypes. |
static int |
DataUtility.getScalarTypes(Data data,
Vector v)
Obtains a Vector consisting of all ScalarTypes present in a Data object's MathType. |
static DataImpl |
DataUtility.makeLocal(Data data)
Converts a remote Data object to a local Data object. |
static DataImpl |
DataUtility.makeLocal(Data data,
boolean printStackTraces)
Converts a remote Data object to a local Data object. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |