Uses of Interface
visad.Data

Packages that use Data
visad The core VisAD package, providing support for VisAD's Data & MathType hierarchy, as well as for VisAD Displays and remote collaboration. 
visad.bom   
visad.cluster   
visad.data Provides for importing data to and exporting data from VisAD. 
visad.data.amanda   
visad.data.bio Provides data forms for handling common microscopy formats. 
visad.data.dods Supports read-only access to datasets on DODS servers by importing such datasets as VisAD data objects. 
visad.data.fits Provides for importing a FITS dataset into VisAD. 
visad.data.gif Provides for importing GIF, JPEG and PNG files into VisAD. 
visad.data.gis   
visad.data.hdf5   
visad.data.hdfeos Provides for importing an HDF-EOS dataset into VisAD. 
visad.data.hrit   
visad.data.jai   
visad.data.mcidas Provides for importing McIDAS AREA files and McIDAS base map (OUTL) files into VisAD. 
visad.data.netcdf Provides for importing a netCDF dataset into VisAD and for exporting a VisAD data object to a netCDF dataset. 
visad.data.netcdf.in Provides for importing a netCDF dataset into VisAD. 
visad.data.netcdf.out Provides for exporting a VisAD data object to a netCDF dataset. 
visad.data.text   
visad.data.tiff   
visad.data.vis5d Provides for importing a Vis5D dataset into VisAD. 
visad.data.visad Provides for importing and exporting serialized Java object files into and out of VisAD. 
visad.data.visad.object   
visad.formula Provides an interface for automatically evaluating formulas based on user-defined operators and functions. 
visad.georef Provides classes for geo-referencing. 
visad.java2d Provides support for two-dimensional VisAD Displays using Java2D. 
visad.java3d Provides support for two- and three-dimensional VisAD Displays using Java3D. 
visad.jmet   
visad.math   
visad.matrix   
visad.meteorology Provides classes that are useful in the field of meteorology. 
visad.python   
visad.sounder   
visad.ss Provides a spreadsheet user interface for VisAD that can import data from any form VisAD supports and compute new data objects using formulas by utilizing the visad.formula package. 
visad.util Provides a collection of useful utilities, many of them GUI widgets, to aid in VisAD application design. 
 

Uses of Data in visad
 

Subinterfaces of Data in visad
 interface Field
          Field is the VisAD interface for finite samplings of functions from R^n to a range type, where n>0.
 interface FlatFieldIface
          FlatField is the VisAD class for finite samplings of functions whose range type and range coordinate systems are simple enough to allow efficient representation.
 interface Function
          Function is the interface for approximate implmentations of mathematical function.
 interface Gridded1DSetIface
          Gridded1DSetIface is the interface to a finite set of samples of R.
 interface GriddedDoubleSet
          GriddedDoubleSet is an interface for GriddedSets that have double-precision samples rather than single-precision samples.
 interface GriddedSetIface
          GriddedSetIface is the interface to a finite set of samples of R^n.
 interface RealIface
          Interface to scalar data for real numbers represented as double precision floating point values.
 interface RealTupleIface
          Interface to the VisAD data class for vectors in R^n for n>0.
 interface RemoteData
          RemoteData is the interface for Remote VisAD data objects.
 interface RemoteField
          RemoteField is the interface for Remote VisAD Field-s.
 interface RemoteFlatField
          RemoteFlatField is the interface for Remote VisAD FlatField-s.
 interface RemoteFunction
          RemoteFunction is the interface for Remote VisAD Function-s.
 interface RemoteTupleIface
          RemoteTupleIface is the interface for Remote VisAD TupleIface-s.
 interface SampledSetIface
          Interface to the abstract superclass of GriddedSet-s and the like.
 interface ScalarIface
          Interface to the VisAD hierarchy of scalar data.
 interface SetIface
          Interface to the abstract superclass of the VisAD hierarchy of sets.
 interface SimpleSetIface
          Interface to the abstract superclass of Sets with a unique ManifoldDimension.
 interface TupleIface
          TupleIface is the VisAD data interface for vectors.
 

Classes in visad that implement Data
 class DataImpl
          DataImpl is the superclass for VisAD's data hierarchy, inheriting the Data interface.
 class DateTime
          DateTime is a class of objects for holding date and time information.
 class DoubleSet
          DoubleSet represents the finite (but large) set of samples of R^dimension made by vectors of IEEE double precision floating point numbers.
 class DoubleStringTuple
          This provides a LoCal Tuple that can hold numeric and string values without taking the hit that having slots and lots of Real and Text objects around.
 class DoubleTuple
          This provides a LoCal RealTuple that can hold numeric values without taking the hit that having lots and lots of Real objects around.
 class FieldImpl
          FieldImpl is the VisAD class for finite samplings of functions from R^n to a range type, where n>0.
 class FlatField
          FlatField is the VisAD class for finite samplings of functions whose range type and range coordinate systems are simple enough to allow efficient representation.
 class FloatSet
          FloatSet represents the finite (but large) set of samples of R^dimension made by vectors of IEEE single precision floating point numbers.
 class FunctionImpl
          FunctionImpl is the abstract superclass for approximate implmentations of mathematical functions.
 class Gridded1DDoubleSet
          Gridded1DDoubleSet is a Gridded1DSet with double-precision samples.
 class Gridded1DSet
          Gridded1DSet represents a finite set of samples of R.
 class Gridded2DDoubleSet
          Gridded2DDoubleSet is a Gridded2DSet with double-precision samples.
 class Gridded2DSet
          Gridded2DSet represents a finite set of samples of R^2.
 class Gridded3DDoubleSet
          Gridded3DDoubleSet is a Gridded3DSet with double-precision samples.
 class Gridded3DSet
          Gridded3DSet represents a finite set of samples of R^3.
 class GriddedSet
          GriddedSet is implemented by those Set sub-classes whose samples lie on a rectangular grid topology (but note the geometry need not be rectangular).
 class ImageFlatField
          ImageFlatField is a VisAD FlatField backed by a java.awt.image.BufferedImage object, instead of the usual float[][] or double[][] samples array.
 class Integer1DSet
          Integer1DSet represents a finite set of samples of R at an integer lattice based at the origin (i.e, 0, 1, 2, ..., length-1).
 class Integer2DSet
          Integer2DSet represents a finite set of samples of R^2 at an integer lattice based at the origin.
 class Integer3DSet
          Integer3DSet represents a finite set of samples of R^3 at an integer lattice based at the origin.
 class IntegerNDSet
          IntegerNDSet represents a finite set of samples of R^n at an integer lattice based at the origin.
 class Irregular1DSet
          Irregular1DSet represents a finite set of samples of R.
 class Irregular2DSet
          IrregularSet for a finite number of samples of R.
 class Irregular3DSet
          Irregular3DSet represents a finite set of samples of R^3.
 class IrregularSet
          IrregularSet is implemented by those Set sub-classes whose samples do not form any ordered pattern.
 class Linear1DSet
          Linear1DSet represents a finite set of samples of R in an arithmetic progression.
 class Linear2DSet
          Linear2DSet represents a finite set of samples of R^2 in a cross product of two arithmetic progressions.
 class Linear3DSet
          Linear3DSet represents a finite set of samples of R^3 in a cross product of three arithmetic progressions.
 class LinearLatLonSet
          LinearLatLonSet represents a finite set of samples of (Latitude, Longitude) in a cross product of two arithmetic progressions.
 class LinearNDSet
          LinearNDSet represents a finite set of samples of R^Dimension in a cross product of arithmetic progressions.
 class List1DDoubleSet
          List1DDoubleSet is the class for Set-s containing lists of 1-D double values with no topology.
 class List1DSet
          List1DSet is the class for Set-s containing lists of 1-D values with no topology.
 class ProductSet
          ProductSet is the cross-product of an array of SampledSets.
 class Real
          Real is the class of VisAD scalar data for real numbers represented as double precision floating point values.
 class RealTuple
          RealTuple is the VisAD data class for vectors in R^n for n>0.
 class RemoteDataImpl
          RemoteDataImpl is the VisAD remote adapter for DataImpl.
 class RemoteFieldImpl
          RemoteFieldImpl is the VisAD remote adapter for FieldImpl.
 class RemoteFlatFieldImpl
          RemoteFlatFieldImpl is the VisAD remote adapter for FlatField.
 class RemoteFunctionImpl
          RemoteFunctionImpl is the VisAD remote adapter for FieldImpl.
 class SampledSet
          SampledSet is the abstract superclass of GriddedSets, PolyCells and MultiCells.
 class Scalar
          Scalar is the superclass of the VisAD hierarchy of scalar data.
 class Set
          Set is the abstract superclass of the VisAD hierarchy of sets.
 class SimpleSet
          SimpleSet is the abstract superclass of Sets with a unique ManifoldDimension.
 class SingletonSet
          SingletonSet is the class for Set-s containing one member.
 class Text
          Text is the class of VisAD scalar data for text strings.
 class Tuple
          Tuple is the general VisAD data class for vectors.
 class UnionSet
          UnionSet is the union of an array of SampledSets.
 

Methods in visad that return Data
 Data DataImpl.__add__(Data data)
          A wrapper around add for JPython
 Data DataImpl.__add__(double data)
          A wrapper around __add__ for JPython
 Data DataImpl.__div__(Data data)
          A wrapper around divide for JPython
 Data DataImpl.__div__(double data)
          A wrapper around __div__ for JPython
 Data Tuple.__getitem__(int index)
          A wrapper around getComponent for JPython.
 Data Set.__getitem__(int index)
          for JPython
 Data FieldImpl.__getitem__(int index)
          A wrapper around getSample for JPython.
 Data FunctionImpl.__getitem__(Real domain)
          A wrapper around evaluate for JPython.
 Data FunctionImpl.__getitem__(RealTuple domain)
          A wrapper around evaluate for JPython.
 Data DataImpl.__mod__(Data data)
          A wrapper around remainder for JPython
 Data DataImpl.__mod__(double data)
          A wrapper around __mod__ for JPython
 Data DataImpl.__mul__(Data data)
          A wrapper around multiply for JPython
 Data DataImpl.__mul__(double data)
          A wrapper around __mul__ for JPython
 Data DataImpl.__neg__()
          A wrapper around negate for JPython
 Data DataImpl.__pow__(Data data)
          A wrapper around pow for JPython
 Data DataImpl.__pow__(double data)
          A wrapper around __pow__ for JPython For low powers, do the multiply directly to preserve units.
 Data DataImpl.__radd__(double data)
          A wrapper around __add__ for JPython
 Data DataImpl.__rdiv__(double data)
          A wrapper around __div__ for JPython
 Data DataImpl.__rmod__(double data)
          A wrapper around __mod__ for JPython
 Data DataImpl.__rmul__(double data)
          A wrapper around __mul__ for JPython
 Data DataImpl.__rpow__(double data)
          A wrapper around __pow__ for JPython
 Data DataImpl.__rsub__(double data)
          A wrapper around __sub__ for JPython
 Data DataImpl.__sub__(Data data)
          A wrapper around subtract for JPython
 Data DataImpl.__sub__(double data)
          A wrapper around __sub__ for JPython
 Data RemoteDataImpl.abs()
          call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.abs()
          call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.abs()
          call unary() to take the absolute value of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.abs(int sampling_mode, int error_mode)
          call unary() to take the absolute value of this
 Data DataImpl.abs(int sampling_mode, int error_mode)
          call unary() to take the absolute value of this
 Data Data.abs(int sampling_mode, int error_mode)
          call unary() to take the absolute value of this
 Data RemoteDataImpl.acos()
          call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.acos()
          call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.acos()
          call unary() to take the arccos of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.acos(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing radian Units
 Data DataImpl.acos(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing radian Units
 Data Data.acos(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing radian Units
 Data RemoteDataImpl.acosDegrees()
          call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.acosDegrees()
          call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.acosDegrees()
          call unary() to take the arccos of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.acosDegrees(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing degree Units
 Data DataImpl.acosDegrees(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing degree Units
 Data Data.acosDegrees(int sampling_mode, int error_mode)
          call unary() to take the arccos of this producing degree Units
 Data RemoteDataImpl.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data DataImpl.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data Data.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data TupleIface.adjustSamplingError(Data error, int error_mode)
          return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data Tuple.adjustSamplingError(Data error, int error_mode)
          return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data RemoteDataImpl.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data RealIface.adjustSamplingError(Data error, int error_mode)
          Returns a clone, except that the ErrorEstimate of the clone is adjusted for a given error mode and uncertainty.
 Data Real.adjustSamplingError(Data error, int error_mode)
          return a Real that clones this, except its ErrorEstimate is adjusted for the sampling error in error
 Data FlatField.adjustSamplingError(Data error, int error_mode)
          return a FlatField that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data FieldImpl.adjustSamplingError(Data error, int error_mode)
          return a Field that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data DataImpl.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data Data.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data RemoteDataImpl.asin()
          call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.asin()
          call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.asin()
          call unary() to take the arcsin of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.asin(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing radian Units
 Data DataImpl.asin(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing radian Units
 Data Data.asin(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing radian Units
 Data RemoteDataImpl.asinDegrees()
          call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.asinDegrees()
          call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.asinDegrees()
          call unary() to take the arcsin of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.asinDegrees(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing degree Units
 Data DataImpl.asinDegrees(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing degree Units
 Data Data.asinDegrees(int sampling_mode, int error_mode)
          call unary() to take the arcsin of this producing degree Units
 Data RemoteDataImpl.atan()
          call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atan()
          call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atan()
          call unary() to take the arctan of this producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atan(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing radian Units
 Data DataImpl.atan(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing radian Units
 Data Data.atan(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing radian Units
 Data RemoteDataImpl.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data DataImpl.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data Data.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data RemoteDataImpl.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data DataImpl.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data Data.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data RemoteDataImpl.atanDegrees()
          call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atanDegrees()
          call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atanDegrees()
          call unary() to take the arctan of this producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atanDegrees(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing degree Units
 Data DataImpl.atanDegrees(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing degree Units
 Data Data.atanDegrees(int sampling_mode, int error_mode)
          call unary() to take the arctan of this producing degree Units
 Data Text.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this (AdaptedData) and data.
 Data DataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data Data.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data TupleIface.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Tuple.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this (AdaptedData) and data.
 Data RealTuple.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Real.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data FlatField.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Return new Field with value 'this op data'.
 Data FieldImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          return new Field with value 'this op data'; test for various relations between types of this and data
 Data DataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data Data.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data RemoteDataImpl.ceil()
          call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.ceil()
          call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.ceil()
          call unary() to take the ceiling of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.ceil(int sampling_mode, int error_mode)
          call unary() to take the ceiling of this
 Data DataImpl.ceil(int sampling_mode, int error_mode)
          call unary() to take the ceiling of this
 Data Data.ceil(int sampling_mode, int error_mode)
          call unary() to take the ceiling of this
 Data RemoteDataImpl.changeMathType(MathType new_type)
          call unary() to clone this except with a new MathType
 Data DataImpl.changeMathType(MathType new_type)
          call unary() to clone this except with a new MathType
 Data Data.changeMathType(MathType new_type)
          call unary() to clone this except with a new MathType
 Data RemoteDataImpl.cos()
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.cos()
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.cos()
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.cos(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees
 Data DataImpl.cos(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees
 Data Data.cos(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming radian Units unless this actual Units are degrees
 Data RemoteDataImpl.cosDegrees()
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.cosDegrees()
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.cosDegrees()
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.cosDegrees(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians
 Data DataImpl.cosDegrees(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians
 Data Data.cosDegrees(int sampling_mode, int error_mode)
          call unary() to take the cos of this assuming degree Units unless this actual Units are radians
 Data RemoteFunctionImpl.derivative(int error_mode)
           
abstract  Data FunctionImpl.derivative(int error_mode)
           
 Data Function.derivative(int error_mode)
          return the tuple of derivatives of this Function with respect to all RealType components of its domain RealTuple; propogate errors according to error_mode
 Data FlatField.derivative(int error_mode)
           
 Data FieldImpl.derivative(int error_mode)
           
 Data RemoteFunctionImpl.derivative(MathType[] derivType_s, int error_mode)
           
abstract  Data FunctionImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data Function.derivative(MathType[] derivType_s, int error_mode)
          return the tuple of derivatives of this Function with respect to all RealType components of its domain RealTuple; set result MathTypes of tuple components to derivType_s; propogate errors according to error_mode
 Data FlatField.derivative(MathType[] derivType_s, int error_mode)
           
 Data FieldImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data RemoteFunctionImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
abstract  Data FunctionImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data Function.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
          return the tuple of derivatives of this Function with respect to the RealTypes in d_partial_s; the RealTypes in d_partial_s may occur in this Function's domain RealTupleType, or, if the domain has a CoordinateSystem, in its Reference RealTupleType; set result MathTypes of tuple components to derivType_s; propogate errors according to error_mode
 Data FlatField.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data FieldImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data RemoteDataImpl.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 Data DataImpl.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 Data Data.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 Data RemoteFunctionImpl.evaluate(Real domain)
           
 Data FunctionImpl.evaluate(Real domain)
          Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS)
 Data Function.evaluate(Real domain)
          Evaluate this Function at domain; for 1-D domains use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS)
 Data RemoteFunctionImpl.evaluate(Real domain, int sampling_mode, int error_mode)
           
 Data FunctionImpl.evaluate(Real domain, int sampling_mode, int error_mode)
          Evaluate this Function with non-default modes for resampling and errors
 Data Function.evaluate(Real domain, int sampling_mode, int error_mode)
          Evaluate this Function, for 1-D domains, with non-default modes for resampling and errors
 Data RemoteFunctionImpl.evaluate(RealTuple domain)
           
 Data FunctionImpl.evaluate(RealTuple domain)
          Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS)
 Data Function.evaluate(RealTuple domain)
          Evaluate this Function at domain; use default modes for resampling (Data.WEIGHTED_AVERAGE) and errors (Data.NO_ERRORS)
 Data RemoteFunctionImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
           
 Data FunctionImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
          Evaluate this Function with non-default modes for resampling and errors
 Data Function.evaluate(RealTuple domain, int sampling_mode, int error_mode)
          Evaluate this Function with non-default modes for resampling and errors
 Data RemoteDataImpl.exp()
          call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.exp()
          call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.exp()
          call unary() to take the exponent of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.exp(int sampling_mode, int error_mode)
          call unary() to take the exponent of this
 Data DataImpl.exp(int sampling_mode, int error_mode)
          call unary() to take the exponent of this
 Data Data.exp(int sampling_mode, int error_mode)
          call unary() to take the exponent of this
 Data RemoteDataImpl.floor()
          call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.floor()
          call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.floor()
          call unary() to take the floor of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.floor(int sampling_mode, int error_mode)
          call unary() to take the floor of this
 Data DataImpl.floor(int sampling_mode, int error_mode)
          call unary() to take the floor of this
 Data Data.floor(int sampling_mode, int error_mode)
          call unary() to take the floor of this
 Data TupleIface.getComponent(int i)
          return component for i between 0 and getDimension() - 1
 Data Tuple.getComponent(int i)
          Returns a component of this instance.
 Data DoubleTuple.getComponent(int i)
          Get the i'th component.
 Data DoubleStringTuple.getComponent(int i)
          Get the i'th component.
 Data[] Tuple.getComponents()
          Returns the components that constitute this instance.
 Data[] Tuple.getComponents(boolean copy)
          Returns the components that constitute this instance.
 Data[] DoubleTuple.getComponents(boolean copy)
          Create, if needed, and return the component array.
 Data[] DoubleStringTuple.getComponents(boolean copy)
          Create, if needed, and return the component array.
 Data ShadowType.getData()
           
 Data RemoteDataReferenceImpl.getData()
          return referenced Data object, but if Data is a FieldImpl return a RemoteFieldImpl referencing Data to avoid copying entire FieldImpl between JVMs
 Data DataReferenceImpl.getData()
           
 Data DataReference.getData()
           
 Data DataDisplayLink.getData()
           
 Data RemoteFieldImpl.getSample(int index)
           
 Data ImageFlatField.getSample(int index)
           
 Data FlatField.getSample(int index)
          Get the range value at the index-th sample.
 Data FieldImpl.getSample(int index)
          Get the range value at the index-th sample.
 Data Field.getSample(int index)
          get the range value at the index-th sample
 Data FlatField.getSample(int index, boolean metadataOnly)
          A stub routine which simply invokes getSample to override FieldImpl.getSample
 Data FieldImpl.getSample(int index, boolean metadataOnly)
          Get the metadata for the range value at the index-th sample.
 Data RemoteDataImpl.log()
          call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.log()
          call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.log()
          call unary() to take the log of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.log(int sampling_mode, int error_mode)
          call unary() to take the log of this
 Data DataImpl.log(int sampling_mode, int error_mode)
          call unary() to take the log of this
 Data Data.log(int sampling_mode, int error_mode)
          call unary() to take the log of this
 Data RemoteDataImpl.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data DataImpl.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data Data.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data RemoteDataImpl.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data DataImpl.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data Data.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data TupleType.missingData()
           
 Data TextType.missingData()
           
 Data SetType.missingData()
           
 Data RealType.missingData()
           
 Data RealTupleType.missingData()
           
abstract  Data MathType.missingData()
          returns a missing Data object for any MathType
 Data FunctionType.missingData()
           
 Data RemoteDataImpl.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data DataImpl.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data Data.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data RemoteDataImpl.negate()
          call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.negate()
          call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.negate()
          call unary() to negate this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.negate(int sampling_mode, int error_mode)
          call unary() to negate this
 Data DataImpl.negate(int sampling_mode, int error_mode)
          call unary() to negate this
 Data Data.negate(int sampling_mode, int error_mode)
          call unary() to negate this
 Data RemoteDataImpl.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 Data DataImpl.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 Data Data.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 Data RemoteDataImpl.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 Data DataImpl.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 Data Data.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 Data RemoteDataImpl.rint()
          call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.rint()
          call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.rint()
          call unary() to take the rint (essentially round) of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.rint(int sampling_mode, int error_mode)
          call unary() to take the rint (essentially round) of this
 Data DataImpl.rint(int sampling_mode, int error_mode)
          call unary() to take the rint (essentially round) of this
 Data Data.rint(int sampling_mode, int error_mode)
          call unary() to take the rint (essentially round) of this
 Data RemoteDataImpl.round()
          call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.round()
          call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.round()
          call unary() to take the round of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.round(int sampling_mode, int error_mode)
          call unary() to take the round of this
 Data DataImpl.round(int sampling_mode, int error_mode)
          call unary() to take the round of this
 Data Data.round(int sampling_mode, int error_mode)
          call unary() to take the round of this
 Data RemoteDataImpl.sin()
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.sin()
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.sin()
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.sin(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees
 Data DataImpl.sin(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees
 Data Data.sin(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming radian Units unless this actual Units are degrees
 Data RemoteDataImpl.sinDegrees()
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.sinDegrees()
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.sinDegrees()
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.sinDegrees(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians
 Data DataImpl.sinDegrees(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians
 Data Data.sinDegrees(int sampling_mode, int error_mode)
          call unary() to take the sin of this assuming degree Units unless this actual Units are radians
 Data RemoteDataImpl.sqrt()
          call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.sqrt()
          call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.sqrt()
          call unary() to take the square root of this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.sqrt(int sampling_mode, int error_mode)
          call unary() to take the square root of this
 Data DataImpl.sqrt(int sampling_mode, int error_mode)
          call unary() to take the square root of this
 Data Data.sqrt(int sampling_mode, int error_mode)
          call unary() to take the square root of this
 Data RemoteDataImpl.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 Data DataImpl.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 Data Data.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 Data RemoteDataImpl.tan()
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.tan()
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.tan()
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.tan(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees
 Data DataImpl.tan(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees
 Data Data.tan(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming radian Units unless this actual Units are degrees
 Data RemoteDataImpl.tanDegrees()
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.tanDegrees()
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.tanDegrees()
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.tanDegrees(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians
 Data DataImpl.tanDegrees(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians
 Data Data.tanDegrees(int sampling_mode, int error_mode)
          call unary() to take the tan of this assuming degree Units unless this actual Units are radians
 Data Text.unary(int op, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.unary(int op, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this (AdaptedData).
 Data DataImpl.unary(int op, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this.
 Data Data.unary(int op, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this.
 Data TupleIface.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Tuple.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Set.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this (AdaptedData).
 Data RealTuple.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Real.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          unary function on a Real; override some trig functions based on Unit; transcental functions destroy dimensionfull Unit
 Data FlatField.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          Return new FlatField with value 'this op'.
 Data FieldImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          return new Field with value 'op this'
 Data DataImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this.
 Data Data.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise unary operation applied to this.
 

Methods in visad with parameters of type Data
 Data DataImpl.__add__(Data data)
          A wrapper around add for JPython
 Data DataImpl.__div__(Data data)
          A wrapper around divide for JPython
 Data DataImpl.__mod__(Data data)
          A wrapper around remainder for JPython
 Data DataImpl.__mul__(Data data)
          A wrapper around multiply for JPython
 Data DataImpl.__pow__(Data data)
          A wrapper around pow for JPython
 void FieldImpl.__setitem__(int index, Data data)
          A wrapper around setSample for JPython.
 Data DataImpl.__sub__(Data data)
          A wrapper around subtract for JPython
 Data RemoteDataImpl.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.add(Data data)
          call binary() to add data to this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data DataImpl.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data Data.add(Data data, int sampling_mode, int error_mode)
          call binary() to add data to this
 Data TupleIface.adjustSamplingError(Data error, int error_mode)
          return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data Tuple.adjustSamplingError(Data error, int error_mode)
          return a Tuple that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data RemoteDataImpl.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data RealIface.adjustSamplingError(Data error, int error_mode)
          Returns a clone, except that the ErrorEstimate of the clone is adjusted for a given error mode and uncertainty.
 Data Real.adjustSamplingError(Data error, int error_mode)
          return a Real that clones this, except its ErrorEstimate is adjusted for the sampling error in error
 Data FlatField.adjustSamplingError(Data error, int error_mode)
          return a FlatField that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data FieldImpl.adjustSamplingError(Data error, int error_mode)
          return a Field that clones this, except its ErrorEstimate-s are adjusted for sampling errors in error
 Data DataImpl.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data Data.adjustSamplingError(Data error, int error_mode)
          return a clone of this, except with ErrorEstimates combined with values in error, according to error_mode
 Data RemoteDataImpl.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atan2(Data data)
          call binary() to take the atan of this by data producing radian Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data DataImpl.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data Data.atan2(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing radian Units
 Data RemoteDataImpl.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.atan2Degrees(Data data)
          call binary() to take the atan of this by data producing degree Units, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data DataImpl.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data Data.atan2Degrees(Data data, int sampling_mode, int error_mode)
          call binary() to take the atan of this by data producing degree Units
 Data Text.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this (AdaptedData) and data.
 Data DataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data Data.binary(Data data, int op, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data TupleIface.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Tuple.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this (AdaptedData) and data.
 Data RealTuple.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data Real.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data FlatField.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Return new Field with value 'this op data'.
 Data FieldImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          return new Field with value 'this op data'; test for various relations between types of this and data
 Data DataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
 Data Data.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
          Pointwise binary operation between this and data.
static TupleType Tuple.buildTupleType(Data[] datums)
          Make a TupleType for an array of Data
 DataShadow DataRenderer.computeRanges(Data data, ShadowType type, DataShadow shadow)
          Compute ranges of values for each RealType in DisplayImpl.RealTypeVector.
 Data RemoteDataImpl.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.divide(Data data)
          call binary() to divide this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 Data DataImpl.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 Data Data.divide(Data data, int sampling_mode, int error_mode)
          call binary() to divide this by data
 boolean ShadowTupleType.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer, ShadowType shadow_api)
          transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
 boolean ShadowTextType.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer, ShadowType shadow_api)
          transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
 boolean ShadowRealType.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer, ShadowType shadow_api)
          transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
 boolean ShadowFunctionOrSetType.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer, ShadowType shadow_api)
          transform data into a (Java3D or Java2D) scene graph; add generated scene graph components as children of group; group is Group (Java3D) or VisADGroup (Java2D); value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
static Tuple Tuple.makeTuple(Data[] datums)
          Create a Tuple from an array of Data objects.
 Data RemoteDataImpl.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.max(Data data)
          call binary() to take the max of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data DataImpl.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data Data.max(Data data, int sampling_mode, int error_mode)
          call binary() to take the max of this and data
 Data RemoteDataImpl.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.min(Data data)
          call binary() to take the min of this and data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data DataImpl.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data Data.min(Data data, int sampling_mode, int error_mode)
          call binary() to take the min of this and data
 Data RemoteDataImpl.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.multiply(Data data)
          call binary() to multiply this by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data DataImpl.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data Data.multiply(Data data, int sampling_mode, int error_mode)
          call binary() to multiply this by data
 Data RemoteDataImpl.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.pow(Data data)
          call binary() to raise this to data power, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 Data DataImpl.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 Data Data.pow(Data data, int sampling_mode, int error_mode)
          call binary() to raise this to data power
 boolean ShadowType.recurseComponent(int i, Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowType.recurseRange(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 Data RemoteDataImpl.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.remainder(Data data)
          call binary() to take the remainder of this divided by data, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 Data DataImpl.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 Data Data.remainder(Data data, int sampling_mode, int error_mode)
          call binary() to take the remainder of this divided by data
 void RemoteDataReferenceImpl.setData(Data d)
          set this RemoteDataReferenceImpl to refer to given Data
 void DataReferenceImpl.setData(Data d)
          Sets the Data object to which this instance refers.
 void DataReference.setData(Data d)
          set reference to data, replacing any currently referenced Data object; if this is local (i.e., an instance of DataReferenceImpl) then the Data argument must also be local (i.e., an instance of DataImpl); if this is Remote (i.e., an instance of RemoteDataReference) then a local Data argument (i.e., an instance of DataImpl) will be passed by copy and a remote Data argument (i.e., an instance of RemoteData) will be passed by remote reference; invokes d.addReference(DataReference r)
 void RemoteFieldImpl.setSample(int index, Data range)
           
 void FlatField.setSample(int index, Data range)
          Set the range value at the index-th sample
 void FieldImpl.setSample(int index, Data range)
          Set the range value at the index-th sample; makes a local copy
 void Field.setSample(int index, Data range)
          set the range value at the index-th sample
 void RemoteFieldImpl.setSample(int index, Data range, boolean copy)
           
 void FlatField.setSample(int index, Data range, boolean copy)
          Set the range value at the index-th sample
 void FieldImpl.setSample(int index, Data range, boolean copy)
          Set the range value at the index-th sample
 void Field.setSample(int index, Data range, boolean copy)
          set the range value at the index-th sample
 void FieldImpl.setSample(int index, Data range, boolean copy, boolean checkRangeType)
          Set the range value at the index-th sample
 void RemoteFieldImpl.setSample(RealTuple domain, Data range)
           
 void FieldImpl.setSample(RealTuple domain, Data range)
           
 void Field.setSample(RealTuple domain, Data range)
          set the range value at the sample nearest to domain
 void RemoteFieldImpl.setSample(RealTuple domain, Data range, boolean copy)
           
 void FieldImpl.setSample(RealTuple domain, Data range, boolean copy)
          set the range value at the sample nearest to domain
 void Field.setSample(RealTuple domain, Data range, boolean copy)
          set the range value at the sample nearest to domain
 void RemoteFieldImpl.setSamples(Data[] range, boolean copy)
          methods adapted from Field
 void ImageFlatField.setSamples(Data[] range, boolean copy)
           
 void FlatField.setSamples(Data[] range, boolean copy)
          set the range values of the function; the order of range values must be the same as the order of domain indices in the DomainSet; copy argument included for consistency with Field, but ignored
 void FieldImpl.setSamples(Data[] range, boolean copy)
          Set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true;
 void Field.setSamples(Data[] range, boolean copy)
          set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true; should use same MathType object in each Data object in range array
 void FieldImpl.setSamples(Data[] range, boolean copy, boolean checkAllRangeTypes)
          Set the range samples of the function; the order of range samples must be the same as the order of domain indices in the DomainSet; copy range objects if copy is true; should use same MathType object in each Data object in range array
 Data RemoteDataImpl.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data DataImpl.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data Data.subtract(Data data)
          call binary() to subtract data from this, using default modes for sampling (Data.NEAREST_NEIGHBOR) and error estimation (Data.NO_ERRORS)
 Data RemoteDataImpl.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 Data DataImpl.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 Data Data.subtract(Data data, int sampling_mode, int error_mode)
          call binary() to subtract data from this
 

Constructors in visad with parameters of type Data
DoubleStringTuple(TupleType type, Data[] prototypes, double[] doubles, String[] strings, Unit[] units)
           
DoubleTuple(RealTupleType type, Data[] prototypes, double[] doubles, Unit[] units)
           
Tuple(Data[] datums)
          Construct a Tuple object from an array of Data objects; this constructs its MathType from the MathTypes of the data array
Tuple(Data[] datums, boolean copy)
          Construct a Tuple object from an array of Data objects; this constructs its MathType from the MathTypes of the data array
Tuple(TupleType type, Data[] datums)
          Construct a Tuple object from a type and an array of Data objects
Tuple(TupleType type, Data[] datums, boolean copy)
          Construct a Tuple object from a type and an array of Data objects
Tuple(TupleType type, Data[] datums, boolean copy, boolean checkType)
          Construct a Tuple object from a type and an array of Data objects
 

Uses of Data in visad.bom
 

Methods in visad.bom with parameters of type Data
 boolean ShadowTextureFillSetTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowImageFunctionTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowImageByRefFunctionTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowCurveSetTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          Transform data into a Java3D scene graph.
 boolean ShadowCurveSetTypeJ2D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          Transform data into a Java2D scene graph.
 void ShadowImageByRefFunctionTypeJ3D.makeColorBytes(Data data, ScalarMap cmap, ScalarMap[] cmaps, float constant_alpha, ShadowRealType[] RangeComponents, int color_length, int domain_length, int[] permute, byte[] byteData, int data_width, int data_height, int tile_width, int tile_height, int xStart, int yStart, int texture_width, int texture_height)
           
 void ShadowImageByRefFunctionTypeJ3D.makeColorBytesDriver(Data imgFlatField, ScalarMap cmap, ScalarMap[] cmaps, float constant_alpha, ShadowRealType[] RangeComponents, int color_length, int domain_length, int[] permute, int data_width, int data_height, int imageType, VisADImageTile tile, int image_index)
           
 

Uses of Data in visad.cluster
 

Subinterfaces of Data in visad.cluster
 interface RemoteClientData
          RemoteClientData is the interface for cluster client VisAD data objects.
 interface RemoteClientField
          RemoteClientField is the interface for cluster client VisAD Field data objects that are not partitioned over nodes.
 interface RemoteClientPartitionedField
          RemoteClientPartitionedField is the interface for cluster client VisAD Field data objects that are partitioned over nodes.
 interface RemoteClientTuple
          RemoteClientTuple is the interface for cluster client VisAD Tuple data objects.
 interface RemoteClusterData
          RemoteClusterData is the interface for cluster client and node Data.
 interface RemoteNodeData
          RemoteNodeData is the interface for cluster node VisAD data objects.
 interface RemoteNodeField
          RemoteNodeField is the interface for cluster node VisAD Field data objects that are not paritioned.
 interface RemoteNodePartitionedField
          RemoteNodePartitionedField is the interface for cluster node VisAD Field data objects that are paritioned.
 interface RemoteNodeTuple
          RemoteNodeTuple is the interface for cluster node VisAD Tuple data objects.
 

Classes in visad.cluster that implement Data
 class RemoteClientDataImpl
          RemoteClientData is the class for cluster client VisAD data objects.
 class RemoteClientFieldImpl
          RemoteClientFieldImpl is the class for cluster client VisAD Field data objects.
 class RemoteClientPartitionedFieldImpl
          RemoteClientPartitionedFieldImpl is the class for cluster client VisAD Field data objects.
 class RemoteClientTupleImpl
          RemoteClientTupleImpl is the class for cluster client VisAD Tuple data objects.
 class RemoteClusterDataImpl
          RemoteClusterDataImpl is the super class for cluster client and node Data.
 class RemoteNodeDataImpl
          RemoteNodeData is the class for cluster node VisAD data objects.
 class RemoteNodeFieldImpl
          RemoteNodeFieldImpl is the class for cluster node VisAD Field data objects.
 class RemoteNodePartitionedFieldImpl
          RemoteNodePartitionedFieldImpl is the class for cluster node VisAD Field data objects that are paritioned.
 class RemoteNodeTupleImpl
          RemoteNodeTupleImpl is the class for cluster client VisAD Tuple data objects.
 class UserDummyDataImpl
          RemoteClientData is the class for cluster client VisAD data objects.
 

Methods in visad.cluster that return Data
 Data RemoteNodeTupleImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteNodeFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientTupleImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data UserDummyDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data UserDummyDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.derivative(int error_mode)
           
 Data RemoteNodeFieldImpl.derivative(int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.derivative(int error_mode)
           
 Data RemoteClientFieldImpl.derivative(int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data RemoteNodeFieldImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data RemoteClientFieldImpl.derivative(MathType[] derivType_s, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data RemoteNodeFieldImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data RemoteClientFieldImpl.derivative(RealTuple location, RealType[] d_partial_s, MathType[] derivType_s, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.evaluate(Real domain)
           
 Data RemoteNodeFieldImpl.evaluate(Real domain)
           
 Data RemoteClientPartitionedFieldImpl.evaluate(Real domain)
           
 Data RemoteClientFieldImpl.evaluate(Real domain)
           
 Data RemoteNodePartitionedFieldImpl.evaluate(Real domain, int sampling_mode, int error_mode)
           
 Data RemoteNodeFieldImpl.evaluate(Real domain, int sampling_mode, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.evaluate(Real domain, int sampling_mode, int error_mode)
           
 Data RemoteClientFieldImpl.evaluate(Real domain, int sampling_mode, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.evaluate(RealTuple domain)
           
 Data RemoteNodeFieldImpl.evaluate(RealTuple domain)
           
 Data RemoteClientPartitionedFieldImpl.evaluate(RealTuple domain)
           
 Data RemoteClientFieldImpl.evaluate(RealTuple domain)
           
 Data RemoteNodePartitionedFieldImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
           
 Data RemoteNodeFieldImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
           
 Data RemoteClientFieldImpl.evaluate(RealTuple domain, int sampling_mode, int error_mode)
           
 Data RemoteNodeTupleImpl.getComponent(int i)
           
 Data RemoteClientTupleImpl.getComponent(int i)
           
 Data RemoteNodePartitionedFieldImpl.getSample(int index)
           
 Data RemoteNodeFieldImpl.getSample(int index)
           
 Data RemoteClientPartitionedFieldImpl.getSample(int index)
           
 Data RemoteClientFieldImpl.getSample(int index)
           
 Data UserDummyDataImpl.unary(int op, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.unary(int op, int sampling_mode, int error_mode)
           
 Data UserDummyDataImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 

Methods in visad.cluster with parameters of type Data
protected  String TestWRFCluster.addData(int id, Data data, ConstantMap[] cmaps, String source, int type, boolean notify)
          override method from BasicSSCell
protected  String TestSSCluster.addData(int id, Data data, ConstantMap[] cmaps, String source, int type, boolean notify)
          override method from BasicSSCell
protected  String TestProxyCluster.addData(int id, Data data, ConstantMap[] cmaps, String source, int type, boolean notify)
          override method from BasicSSCell
 Data RemoteNodeTupleImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteNodePartitionedFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteNodeFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientTupleImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientPartitionedFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data RemoteClientFieldImpl.adjustSamplingError(Data error, int error_mode)
           
 Data UserDummyDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data UserDummyDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data RemoteClientDataImpl.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 DataShadow UserRendererJ3D.computeRanges(Data data, ShadowType type, DataShadow shadow)
           
 DataShadow ClientRendererJ3D.computeRanges(Data data, ShadowType type, DataShadow shadow)
           
 boolean ShadowNodeFunctionTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 void RemoteNodePartitionedFieldImpl.setSample(int index, Data range)
           
 void RemoteNodeFieldImpl.setSample(int index, Data range)
           
 void RemoteClientPartitionedFieldImpl.setSample(int index, Data range)
           
 void RemoteClientFieldImpl.setSample(int index, Data range)
           
 void RemoteNodePartitionedFieldImpl.setSample(int index, Data range, boolean copy)
           
 void RemoteNodeFieldImpl.setSample(int index, Data range, boolean copy)
           
 void RemoteClientPartitionedFieldImpl.setSample(int index, Data range, boolean copy)
           
 void RemoteClientFieldImpl.setSample(int index, Data range, boolean copy)
           
 void RemoteNodePartitionedFieldImpl.setSample(RealTuple domain, Data range)
           
 void RemoteNodeFieldImpl.setSample(RealTuple domain, Data range)
           
 void RemoteClientPartitionedFieldImpl.setSample(RealTuple domain, Data range)
           
 void RemoteClientFieldImpl.setSample(RealTuple domain, Data range)
           
 void RemoteNodePartitionedFieldImpl.setSample(RealTuple domain, Data range, boolean copy)
           
 void RemoteNodeFieldImpl.setSample(RealTuple domain, Data range, boolean copy)
           
 void RemoteClientPartitionedFieldImpl.setSample(RealTuple domain, Data range, boolean copy)
           
 void RemoteClientFieldImpl.setSample(RealTuple domain, Data range, boolean copy)
           
 void RemoteNodePartitionedFieldImpl.setSamples(Data[] range, boolean copy)
           
 void RemoteNodeFieldImpl.setSamples(Data[] range, boolean copy)
           
 void RemoteClientPartitionedFieldImpl.setSamples(Data[] range, boolean copy)
           
 void RemoteClientFieldImpl.setSamples(Data[] range, boolean copy)
           
 

Constructors in visad.cluster with parameters of type Data
RemoteClientTupleImpl(Data[] datums)
          must call setupClusterData after constructor to finish the "construction"
RemoteNodeTupleImpl(Data[] datums)
          must call setupClusterData after constructor to finish the "construction"
 

Uses of Data in visad.data
 

Classes in visad.data that implement Data
 class AreaImageCacheAdapter
          Adapts a FlatField backed by a AreaImageAccessor to work with a FlatFieldCache.
 class CachedFlatField
          This is a FloatField that caches to disk its float array.
 class FileField
           
 class FileFlatField
           
 

Methods in visad.data that return Data
 Data FileFlatField.adjustSamplingError(Data error, int error_mode)
           
 Data AreaImageCacheAdapter.adjustSamplingError(Data error, int error_mode)
           
 Data FileFlatField.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data FileFlatField.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data FileFlatField.getSample(int index)
           
 Data FileField.getSample(int index)
           
 Data CachedFlatField.getSample(int index)
          Get the range value at the index-th sample.
 Data AreaImageCacheAdapter.getSample(int index)
           
 Data FileFlatField.unary(int op, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.unary(int op, int sampling_mode, int error_mode)
           
 Data FileFlatField.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.unary(int op, MathType new_type, int sampling_mode, int error_mode)
           
 

Methods in visad.data with parameters of type Data
 void Repository.add(String id, Data data, boolean replace)
          Add a data object to an existing data object in the repository.
 void FunctionFormFamily.add(String id, Data data, boolean replace)
          Add data to an existing data object using the first appropriate Form.
abstract  void FormNode.add(String id, Data data, boolean replace)
          Add data to an existing data object.
 void FormFamily.add(String id, Data data, boolean replace)
          Add data to an existing data object.
 Data FileFlatField.adjustSamplingError(Data error, int error_mode)
           
 Data AreaImageCacheAdapter.adjustSamplingError(Data error, int error_mode)
           
 Data FileFlatField.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.binary(Data data, int op, int sampling_mode, int error_mode)
           
 Data FileFlatField.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
 Data AreaImageCacheAdapter.binary(Data data, int op, MathType new_type, int sampling_mode, int error_mode)
           
static DataNode DataNode.create(Data data)
          Factory method for creating an instance of the appropriate type.
 void LinkedDataSource.dataChanged(Data data)
          Update the data to which this LinkedDataSource is linked.
 FormNode Repository.getForms(Data data)
          Return the forms of data that are both supported by this repository and compatible with a data object.
abstract  FormNode FormNode.getForms(Data data)
          Return the data forms that are compatible with a data object.
 FormNode FormFamily.getForms(Data data)
          Return the data forms that are compatible with a data object.
 void EmptyDataProcessor.processTuple(TupleType type, Data[] components, Tuple t, Object token)
           
 void DataProcessor.processTuple(TupleType type, Data[] components, Tuple t, Object token)
           
abstract  void BaseDataProcessor.processTuple(TupleType type, Data[] components, Tuple t, Object token)
           
 void Repository.save(String id, Data data, boolean replace)
          Save a data object in the first compatible data form.
 void FunctionFormFamily.save(String id, Data data, boolean replace)
          Save a Data object using the first appropriate Form.
abstract  void FormNode.save(String id, Data data, boolean replace)
          Save a VisAD data object in this form.
 void FormFamily.save(String id, Data data, boolean replace)
          Save a VisAD data object.
 void Repository.save(String id, Data data, FormNode form, boolean replace)
          Save a data object in a particular form.
 void FileFlatField.setSample(int index, Data range)
           
 void FileField.setSample(int index, Data range)
           
 void AreaImageCacheAdapter.setSample(int index, Data range)
           
 void FileFlatField.setSample(int index, Data range, boolean copy)
           
 void AreaImageCacheAdapter.setSample(int index, Data range, boolean copy)
           
 void FileFlatField.setSample(RealTuple domain, Data range)
           
 void AreaImageCacheAdapter.setSample(RealTuple domain, Data range)
           
abstract  void FileAccessor.writeFile(int[] fileLocations, Data range)
           
 

Uses of Data in visad.data.amanda
 

Fields in visad.data.amanda declared as Data
static Data Event.missing
           
 

Methods in visad.data.amanda that return Data
 Data Tracks.makeData()
           
 

Methods in visad.data.amanda with parameters of type Data
 void F2000Form.add(String id, Data data, boolean replace)
           
 FormNode F2000Form.getForms(Data data)
           
 void F2000Form.save(String id, Data data, boolean replace)
           
 

Uses of Data in visad.data.bio
 

Methods in visad.data.bio with parameters of type Data
 void LociForm.add(String id, Data data, boolean replace)
          Adds data to an existing image file.
 FormNode LociForm.getForms(Data data)
          Returns the data forms that are compatible with a data object.
 void LociForm.save(String id, Data data, boolean replace)
          Saves a VisAD Data object at the given location.
 

Uses of Data in visad.data.dods
 

Methods in visad.data.dods with parameters of type Data
 void DODSForm.add(String id, Data data, boolean replace)
          Throws an exception.
 FormNode DODSForm.getForms(Data data)
          Returns null.
 void DODSForm.save(String id, Data data, boolean replace)
          Throws an exception.
 void VectorAccessor.writeFile(int[] fileLocation, Data range)
          Throws a VisADError.
 void SequenceVariableAdapter.SequenceAccessor.writeFile(int[] fileLocation, Data range)
          Throws a VisADError.
 void GridVariableAdapter.GridAccessor.writeFile(int[] fileLocation, Data range)
          Throws a VisADError.
 

Uses of Data in visad.data.fits
 

Methods in visad.data.fits with parameters of type Data
 void FitsForm.add(String id, Data data, boolean replace)
           
 FormNode FitsForm.getForms(Data data)
           
 void FitsForm.save(String id, Data data, boolean replace)
           
 void FitsAdapter.save(String name, Data data, boolean replace)
           
 boolean TourGuide.show(Data data, Tourist tourist, int depth)
           
 

Constructors in visad.data.fits with parameters of type Data
FitsTourGuide(Data data, Tourist tourist)
           
 

Uses of Data in visad.data.gif
 

Methods in visad.data.gif with parameters of type Data
 void GIFForm.add(String id, Data data, boolean replace)
           
 FormNode GIFForm.getForms(Data data)
           
 void GIFForm.save(String id, Data data, boolean replace)
           
 

Uses of Data in visad.data.gis
 

Methods in visad.data.gis with parameters of type Data
 void UsgsDemForm.add(String id, Data data, boolean replace)
          Add data to an existing data object
 void ArcAsciiGridForm.add(String id, Data data, boolean replace)
          Add data to an existing data object
 FormNode UsgsDemForm.getForms(Data data)
          Return the data forms that are compatible with a data object
 FormNode ArcAsciiGridForm.getForms(Data data)
          Return the data forms that are compatible with a data object
 void UsgsDemForm.save(String id, Data data, boolean replace)
          Save a VisAD data object in this form
 void ArcAsciiGridForm.save(String id, Data data, boolean replace)
          Save a VisAD data object in this form
 

Uses of Data in visad.data.hdf5
 

Methods in visad.data.hdf5 with parameters of type Data
 void HDF5Form.add(String id, Data data, boolean replace)
           
 FormNode HDF5Form.getForms(Data data)
           
 void HDF5Form.save(String filename, Data data, boolean replace)
           
 

Uses of Data in visad.data.hdfeos
 

Methods in visad.data.hdfeos with parameters of type Data
 void HdfeosForm.add(String id, Data data, boolean replace)
           
 FormNode HdfeosForm.getForms(Data data)
           
 void HdfeosForm.save(String id, Data data, boolean replace)
           
 void HdfeosAccessor.writeFile(int[] fileLocations, Data range)
           
 

Uses of Data in visad.data.hrit
 

Methods in visad.data.hrit with parameters of type Data
 void HRITForm.add(String id, Data data, boolean replace)
          This has not been implemented
 FormNode HRITForm.getForms(Data data)
          not implemented yet
 void HRITForm.save(String id, Data data, boolean replace)
          save the file back to disk This has not been implemented yet
 

Uses of Data in visad.data.jai
 

Methods in visad.data.jai with parameters of type Data
 void JAIForm.add(String id, Data data, boolean replace)
          Adds data to an existing JAI image file.
 FormNode JAIForm.getForms(Data data)
           
 void JAIForm.save(String id, Data data, boolean replace)
          Saves a VisAD Data object to a JAI image format at the given location.
 

Uses of Data in visad.data.mcidas
 

Methods in visad.data.mcidas with parameters of type Data
 void PointForm.add(String id, Data data, boolean replace)
          This has not been implemented
 void MapForm.add(String id, Data data, boolean replace)
          Add data to an existing data object
 void AreaForm.add(String id, Data data, boolean replace)
          This has not been implemented
 FormNode PointForm.getForms(Data data)
          not implemented yet
 FormNode MapForm.getForms(Data data)
          Return the data forms that are compatible with a data object
 FormNode AreaForm.getForms(Data data)
          not implemented yet
 void PointForm.save(String id, Data data, boolean replace)
          save the file back to disk This has not been implemented yet
 void MapForm.save(String id, Data data, boolean replace)
          Save a VisAD data object in this form
 void AreaForm.save(String id, Data data, boolean replace)
          save the file back to disk This has not been implemented yet
 

Uses of Data in visad.data.netcdf
 

Methods in visad.data.netcdf with parameters of type Data
 void Plain.add(String id, Data data, boolean replace)
          Add data to an existing data object.
 FormNode Plain.getForms(Data data)
          Return the data forms that are compatible with a data object.
 void Plain.save(String path, Data data, boolean replace)
          Save a VisAD data object in this form.
 

Uses of Data in visad.data.netcdf.in
 

Methods in visad.data.netcdf.in with parameters of type Data
 void FileDataFactory.netCDFFlatFieldAccessor.writeFile(int[] fileLocation, Data range)
          Does nothing.
 

Uses of Data in visad.data.netcdf.out
 

Methods in visad.data.netcdf.out with parameters of type Data
protected  void VisADAdapter.visit(Data data, visad.data.netcdf.out.VisADAccessor outerAccessor)
          Visit a VisAD data object.
 

Constructors in visad.data.netcdf.out with parameters of type Data
VisADAdapter(Data data)
          Construct from a generic VisAD data object.
 

Uses of Data in visad.data.text
 

Methods in visad.data.text that return Data
static Data TextAdapter.processFile(String file)
          Read in the given file and return the processed data
 

Methods in visad.data.text with parameters of type Data
 void TextForm.add(String id, Data data, boolean replace)
           
 FormNode TextForm.getForms(Data data)
           
 void TextAdapter.StreamProcessor.processValues(Data[] tuple)
           
 void TextForm.save(String id, Data data, boolean replace)
           
 

Uses of Data in visad.data.tiff
 

Methods in visad.data.tiff with parameters of type Data
 void LegacyTiffForm.add(String id, Data data, boolean replace)
          Deprecated. Adds data to an existing TIFF file.
 FormNode LegacyTiffForm.getForms(Data data)
          Deprecated.  
 void LegacyTiffForm.save(String id, Data data, boolean replace)
          Deprecated. Saves a VisAD Data object to an uncompressed TIFF file.
 

Uses of Data in visad.data.vis5d
 

Methods in visad.data.vis5d with parameters of type Data
 void Vis5DTopoForm.add(String id, Data data, boolean replace)
          Add data to an existing data object.
 void Vis5DForm.add(String id, Data data, boolean replace)
           
 FormNode Vis5DTopoForm.getForms(Data data)
          Return the data forms that are compatible with a data object.
 FormNode Vis5DForm.getForms(Data data)
           
 void Vis5DTopoForm.save(String id, Data data, boolean replace)
          Save a VisAD data object in this form.
 void Vis5DForm.save(String id, Data data, boolean replace)
           
 void Vis5DFileAccessor.writeFile(int[] fileLocations, Data range)
           
 

Uses of Data in visad.data.visad
 

Methods in visad.data.visad with parameters of type Data
 void VisADForm.add(String id, Data data, boolean replace)
           
 FormNode VisADForm.getForms(Data data)
           
 void BinaryWriter.processTuple(TupleType type, Data[] components, Tuple t, Object token)
           
 void BinarySizer.processTuple(TupleType type, Data[] components, Tuple t, Object token)
           
 void VisADForm.save(String id, Data data, boolean replace)
          Save a Data object.
 void VisADForm.save(String id, Data data, boolean replace, boolean bigObject)
          Save a Data object.
 

Uses of Data in visad.data.visad.object
 

Methods in visad.data.visad.object that return Data
static Data[] BinaryDataArray.read(BinaryReader reader)
           
 

Methods in visad.data.visad.object with parameters of type Data
static int BinaryTuple.computeBytes(Data[] components)
           
static int BinaryDataArray.computeBytes(Data[] array)
           
static void BinaryDataArray.write(BinaryWriter writer, Data[] array, Object token)
           
static void BinaryTuple.write(BinaryWriter writer, TupleType type, Data[] components, Tuple t, Object token)
           
 

Uses of Data in visad.formula
 

Methods in visad.formula that return Data
static Data FormulaUtil.brackets(Field f, Real r)
          evaluate the bracket function; e.g., A1[5] or A1[A2]
static Data FormulaUtil.derive(Function f, VRealType rt)
          evaluate the derive function
static Data FormulaUtil.dot(TupleIface t, Real r)
          evaluate the dot operator
static Data FormulaUtil.extract(Field f, Real r)
          evaluate the extract function
static Data FormulaUtil.implicit(Function f, Real r)
          evaluate implicit function syntax; e.g., A1(5) or A1(A2)
static Data FormulaUtil.link(VMethod m, Object[] o)
          evaluate the link function
 

Uses of Data in visad.georef
 

Subinterfaces of Data in visad.georef
 interface EarthLocation
          Interface for specifying a point on the earth's surface in terms of latitude, longitude and altitude above sea level.
 interface LatLonPoint
          Interface for supporting latitude/longitude points.
 interface NamedLocation
          An interface for a named earth location.
 interface NavigatedField
          A particular type of Field whose Domain Set contains values of Latitude and Longitude, or whose CoordinateSystem can transform to RealType.Latitude and RealType.Longitude
 

Classes in visad.georef that implement Data
 class EarthLocationLite
          This provides a LoCal EarthLocation that is much faster to create than the EarthLocationTuple.
 class EarthLocationTuple
          RealTuple implementation of EarthLocation for representing a location on the earth's surface in terms of latitude, longitude and altitude above sea level.
 class LatLonTuple
          RealTuple implementation of LatLonPoint for defining lat/lon points
 class NamedLocationTuple
          Tuple implementation of NamedLocation for representing a location on the earth's surface in terms of latitude, longitude and altitude above sea level and some sort of identifier.
 class UTMCoordinate
          RealTuple implementation of a Universal Transverse Mercator (UTM) coordinate
 

Methods in visad.georef that return Data
 Data EarthLocationLite.getComponent(int i)
          Get the i'th component.
 Data[] EarthLocationLite.getComponents(boolean copy)
          Create, if needed, and return the component array.
 

Uses of Data in visad.java2d
 

Methods in visad.java2d that return Data
 Data ShadowTypeJ2D.getData()
           
 

Methods in visad.java2d with parameters of type Data
 boolean ShadowTupleTypeJ2D.doTransform(VisADGroup group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a VisADSceneGraphObject; return true if need post-process
 boolean ShadowTextTypeJ2D.doTransform(VisADGroup group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java2D VisADSceneGraphObject; return true if need post-process
 boolean ShadowRealTypeJ2D.doTransform(VisADGroup group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java2D VisADSceneGraphObject; return true if need post-process
 boolean ShadowFunctionOrSetTypeJ2D.doTransform(VisADGroup group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a VisADSceneGraphObject; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
 boolean ShadowTupleTypeJ2D.recurseComponent(int i, Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowFunctionOrSetTypeJ2D.recurseRange(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 

Uses of Data in visad.java3d
 

Methods in visad.java3d that return Data
 Data ShadowTypeJ3D.getData()
          Get the data
 

Methods in visad.java3d with parameters of type Data
 boolean ShadowTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java3D scene graph; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process; this is default (for ShadowTextType)
 boolean ShadowTupleTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java3D scene graph; return true if need post-process
 boolean ShadowTextTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java3D scene graph; return true if need post-process
 boolean ShadowRealTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java3D scene graph; return true if need post-process
 boolean ShadowFunctionOrSetTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
          transform data into a Java3D scene graph; add generated scene graph components as children of group; value_array are inherited valueArray values; default_values are defaults for each display.DisplayRealTypeVector; return true if need post-process
 boolean ShadowAnimationFunctionTypeJ3D.doTransform(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowTupleTypeJ3D.recurseComponent(int i, Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 boolean ShadowFunctionOrSetTypeJ3D.recurseRange(Object group, Data data, float[] value_array, float[] default_values, DataRenderer renderer)
           
 

Uses of Data in visad.jmet
 

Methods in visad.jmet with parameters of type Data
static void DumpType.dumpDataType(Data d)
          Decomposes a VisAD Data object and lists out information about its components.
static void DumpType.dumpDataType(Data d, OutputStream uos)
          Decomposes a VisAD Data object and lists out information about its components.
 

Uses of Data in visad.math
 

Methods in visad.math with parameters of type Data
static FlatField FFT.backwardFT(Data[] datums)
          for use by SpreadSheet only - ordinary applications should use other method signatures; invoke in SpreadSheet by: link(visad.math.FFT.backwardFT(A1))
static FlatField FFT.forwardFT(Data[] datums)
          for use by SpreadSheet only - ordinary applications should use other method signatures; invoke in SpreadSheet by: link(visad.math.FFT.forwardFT(A1))
static FlatField Histogram.makeHistogram(Data[] datums)
          invoke in SpreadSheet by: link(visad.math.Histogram.makeHistogram(A1, A2))
 

Uses of Data in visad.matrix
 

Classes in visad.matrix that implement Data
 class JamaCholeskyDecomposition
          JamaCholeskyDecomposition is a VisAD wrapper for JAMA CholeskyDecompositions.
 class JamaEigenvalueDecomposition
          JamaEigenvalueDecomposition is a VisAD wrapper for JAMA EigenvalueDecompositions.
 class JamaLUDecomposition
          JamaLUDecomposition is a VisAD wrapper for JAMA LUDecompositions.
 class JamaMatrix
          JamaMatrix is a VisAD wrapper for JAMA matrices.
 class JamaQRDecomposition
          JamaQRDecomposition is a VisAD wrapper for JAMA QRDecompositions.
 class JamaSingularValueDecomposition
          JamaSingularValueDecomposition is a VisAD wrapper for JAMA SingularValueDecompositions.
 

Uses of Data in visad.meteorology
 

Subinterfaces of Data in visad.meteorology
 interface ImageSequence
          Interface for representing a time sequence of single-banded images.
 interface SatelliteData
          An interface for defining properties associated with satellite data.
 interface SingleBandedImage
          An interface for representing single--banded planar satellite or radar imagery.
 

Classes in visad.meteorology that implement Data
 class ImageSequenceImpl
          Implementation of an ImageSequence.
 class NavigatedImage
          An implementation for representing single-banded planar satellite or radar imagery.
 class SatelliteImage
          An implementation for representing single-banded planar satellite that has navigation.
 class SingleBandedImageImpl
          An implementation for representing single-banded planar satellite or radar imagery.
 

Methods in visad.meteorology that return Data
 Data SingleBandedImageImpl.binary(Data data, int op, int samplingMode, int errorMode)
          Return the result of a binary operation between this instance and another operand.
 Data SingleBandedImageImpl.unary(int op, int samplingMode, int errorMode)
          Return the result of a unary operation on this instance.
 Data SingleBandedImageImpl.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          return new SingleBandedImageImpl with value 'op this'
 Data SatelliteImage.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          return new SatelliteImage with value 'op this'
 Data NavigatedImage.unary(int op, MathType new_type, int sampling_mode, int error_mode)
          return new NavigatedImage with value 'op this'
 

Methods in visad.meteorology with parameters of type Data
 Data SingleBandedImageImpl.binary(Data data, int op, int samplingMode, int errorMode)
          Return the result of a binary operation between this instance and another operand.
 

Uses of Data in visad.python
 

Methods in visad.python that return Data
static Data JPythonMethods.abs_data(Data data)
          Return point-wise absolute value of data name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.abs(Data data)
          Deprecated. Consider using JPythonMethods.abs_data(Data) instead.
static Data JPythonMethods.acos(Data data)
          Return point-wise arccosine value of data, in radians.
static Data JPythonMethods.acosDegrees(Data data)
          return point-wise arccosine value of data, in degrees.
static Data JPythonMethods.asin(Data data)
          return point-wise arcsine value of data, in radians
static Data JPythonMethods.asinDegrees(Data data)
          return point-wise arcsine value of data, in degrees.
static Data JPythonMethods.atan(Data data)
          return point-wise arctangent value of data, in radians.
static Data JPythonMethods.atan2(Data data1, Data data2)
          return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2(Data data1, double data2)
          Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2(double data1, Data data2)
          Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2Degrees(Data data1, Data data2)
          return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atan2Degrees(Data data1, double data2)
          Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atan2Degrees(double data1, Data data2)
          Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atanDegrees(Data data)
          return point-wise arctangent value of data, in degrees.
static Data JPythonMethods.ceil(Data data)
          return point-wise ceil value of data (smallest integer not less than).
static Data JPythonMethods.cos(Data data)
          return point-wise cosine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.cosDegrees(Data data)
          return point-wise cosine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
static Data JPythonMethods.evaluate(Field data, double domain)
           
static Data JPythonMethods.evaluate(Field data, Real domain)
          Creates a VisAD Data by evaluating the Field at the point given in the domain.
static Data JPythonMethods.exp(Data data)
          return point-wise exp value of data.
static Data JPythonMethods.floor(Data data)
          return point-wise floor value of data (largest integer not greater than)
static Data JPythonMethods.getNetcdfData(String filename)
          Helper method to read netcdf files with possible factor
static Data JPythonMethods.getNetcdfData(String filename, String factor)
          Try to create a Data object from a NetCDF file
static Data JPythonMethods.log(Data data)
          return point-wise log value of data
static Data JPythonMethods.max_data(Data data1, Data data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.max_data(Data data1, double data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.max_data(double data1, Data data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.min_data(Data data1, Data data2)
          return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.min_data(Data data1, double data2)
          return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.min_data(double data1, Data data2)
          Return point-wise minimum value of data1 and data2.
static Data JPythonMethods.rint(Data data)
          return point-wise rint value of data (closest integer)
static Data JPythonMethods.round(Data data)
          return point-wise round value of data (closest integer).
static Data JPythonMethods.sin(Data data)
          return point-wise sine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.sinDegrees(Data data)
          return point-wise sine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
static Data JPythonMethods.sqrt(Data data)
          return point-wise square root value of data
static Data JPythonMethods.tan(Data data)
          return point-wise tan value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.tanDegrees(Data data)
          return point-wise tangent value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
 

Methods in visad.python with parameters of type Data
static Data JPythonMethods.abs_data(Data data)
          Return point-wise absolute value of data name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.abs(Data data)
          Deprecated. Consider using JPythonMethods.abs_data(Data) instead.
static Data JPythonMethods.acos(Data data)
          Return point-wise arccosine value of data, in radians.
static Data JPythonMethods.acosDegrees(Data data)
          return point-wise arccosine value of data, in degrees.
static Data JPythonMethods.asin(Data data)
          return point-wise arcsine value of data, in radians
static Data JPythonMethods.asinDegrees(Data data)
          return point-wise arcsine value of data, in degrees.
static Data JPythonMethods.atan(Data data)
          return point-wise arctangent value of data, in radians.
static Data JPythonMethods.atan2(Data data1, Data data2)
          return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2(Data data1, double data2)
          Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2(double data1, Data data2)
          Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in radians.
static Data JPythonMethods.atan2Degrees(Data data1, Data data2)
          return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atan2Degrees(Data data1, double data2)
          Return point-wise arc tangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atan2Degrees(double data1, Data data2)
          Return point-wise arctangent value of data1 / data2 over full (-pi, pi) range, returned in degrees.
static Data JPythonMethods.atanDegrees(Data data)
          return point-wise arctangent value of data, in degrees.
static Data JPythonMethods.ceil(Data data)
          return point-wise ceil value of data (smallest integer not less than).
static Data JPythonMethods.cos(Data data)
          return point-wise cosine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.cosDegrees(Data data)
          return point-wise cosine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
static int JPythonMethods.domainDimension(Data data)
          Get the domain dimension of the Data object
static RealTupleType JPythonMethods.domainType(Data data)
          Get the domain Type for the Data object
static String JPythonMethods.domainType(Data data, int comp)
          Get the name of the given component of the domain RealType.
static void JPythonMethods.dumpType(Data d)
          helper method for dumpMathType() only This just dumps out the MathType of the Data object.
static void JPythonMethods.dumpTypes(Data d)
          Helper method for the dump(Data|Math)Type() methods.
static Data JPythonMethods.exp(Data data)
          return point-wise exp value of data.
static int[] JPythonMethods.find(Data f, String op, Data v)
          Get a list of points where a comparison is true.
static Data JPythonMethods.floor(Data data)
          return point-wise floor value of data (largest integer not greater than)
static Set JPythonMethods.getDomain(Data data)
          Return the sampling set for the domain of the Data object
static int JPythonMethods.getDomainDimension(Data data)
          Get the number of domain components from a given Data object.
static Set JPythonMethods.getDomainSet(Data data)
          Return the sampling set for the domain of the Data object
static int[] JPythonMethods.getDomainSizes(Data data)
          Return the lengths of the components of the sampling set
static RealTupleType JPythonMethods.getDomainType(Data data)
          Get the domain Type for the Data object
static int JPythonMethods.getRangeDimension(Data data)
          Get the number of range components from a given Data object.
static MathType JPythonMethods.getRangeType(Data data)
          Get the range Type for the field
static MathType JPythonMethods.getType(Data data)
          Get the MathType of the named VisAD data object
static Data JPythonMethods.log(Data data)
          return point-wise log value of data
static FieldImpl JPythonMethods.mask(Data f, String op, Data v)
          Mask out values outside testing limits...
static FieldImpl JPythonMethods.mask(FieldImpl f, String op, Data v)
          Mask out values outside testing limits in a FieldImpl
static FieldImpl JPythonMethods.mask(FieldImpl f, String op, Data v, boolean useNaN)
          Mask out values outside testing limits in a FieldImpl
static Data JPythonMethods.max_data(Data data1, Data data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.max_data(Data data1, double data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.max_data(double data1, Data data2)
          Return point-wise maximum value of data1 and data2.
static Data JPythonMethods.min_data(Data data1, Data data2)
          return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.min_data(Data data1, double data2)
          return point-wise minimum value of data1 and data2 name changed 1/11/02 to avoid conflicts with Jython built-in
static Data JPythonMethods.min_data(double data1, Data data2)
          Return point-wise minimum value of data1 and data2.
static int JPythonMethods.rangeDimension(Data data)
          get the number of range components of the Data object
static MathType JPythonMethods.rangeType(Data data)
          get the range Type for the field
static String JPythonMethods.rangeType(Data data, int comp)
          Get the name of the given component of the range RealType.
static Data JPythonMethods.rint(Data data)
          return point-wise rint value of data (closest integer)
static Data JPythonMethods.round(Data data)
          return point-wise round value of data (closest integer).
static void JPythonMethods.saveNetcdf(String fn, Data d)
          Save the Data in a netcdf file
static Data JPythonMethods.sin(Data data)
          return point-wise sine value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.sinDegrees(Data data)
          return point-wise sine value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
static Data JPythonMethods.sqrt(Data data)
          return point-wise square root value of data
static Data JPythonMethods.tan(Data data)
          return point-wise tan value of data, assuming input values are in radians unless they have units convertable with radians, in which case those units are converted to radians
static Data JPythonMethods.tanDegrees(Data data)
          return point-wise tangent value of data, assuming input values are in degrees unless they have units convertable with degrees, in which case those units are converted to degrees
static ByteArrayOutputStream JPythonMethods.whatType(Data d)
          helper method for dumpMathType() only This just dumps out the MathType of the Data object into a ByteArrayOutputStream which is returned.
static ByteArrayOutputStream JPythonMethods.whatTypes(Data d)
          helper method for the dump(Data|Math)Type() methods this will list both the MathType and DataType information to a ByteArrayOutputStream which is returned.
 

Uses of Data in visad.sounder
 

Classes in visad.sounder that implement Data
 class Sounding
          Sounding is the VisAD class for atmospheric soundings.
 class Spectrum
          Sounding is the VisAD class for atmospheric soundings.
 

Uses of Data in visad.ss
 

Methods in visad.ss that return Data
 Data SSCellData.getData()
          Gets the Data object.
 Data[] BasicSSCell.getData()
          Gets this cell's Data objects.
 Data BasicSSCell.getData(String varName)
          Gets this cell's Data object with the specified variable name.
 

Methods in visad.ss with parameters of type Data
 String BasicSSCell.addData(Data data)
          Adds a Data object to this cell, creating an associated DataReference for it.
 String BasicSSCell.addData(Data data, ConstantMap[] cmaps)
          Adds a Data object to this cell, creating an associated DataReference with the specified ConstantMaps for it.
protected  String BasicSSCell.addData(int id, Data data, ConstantMap[] cmaps, String source, int type, boolean notify)
          Adds a Data object to this cell from the given source of the specified type, creating an associated DataReference for it.
static DataImpl BasicSSCell.makeLocal(Data data)
          Deprecated. Use visad.DataUtility.makeLocal(data) instead.
 void BasicSSCell.removeData(Data data)
          Removes the given Data object from this cell.
 void SSCellData.setData(Data data)
          Sets the data.
 void BasicSSCell.setData(Data data)
          Deprecated. Use addData(Data) instead.
 

Constructors in visad.ss with parameters of type Data
MappingDialog(Frame parent, Data[] data, ScalarMap[] startMaps, boolean allowAlpha, boolean allow3D)
          Constructs a MappingDialog from multiple Data objects.
MappingDialog(Frame parent, Data data, ScalarMap[] startMaps, boolean allowAlpha, boolean allow3D)
          Constructs a MappingDialog from a single Data object.
 

Uses of Data in visad.util
 

Methods in visad.util with parameters of type Data
static ScalarMap[] DataUtility.convertStringToMaps(String mapString, Data[] data, boolean showErrors)
          Converts the given map string to its corresponding array of mappings.
static ScalarMap[] DataUtility.convertStringToMaps(String mapString, Data data, boolean showErrors)
          Converts the given map string to its corresponding array of mappings.
static TupleIface DataUtility.ensureTuple(Data datum)
          Ensures that a Data is a Tuple.
static FlatField[] DataUtility.getImageFields(Data data)
           
static int DataUtility.getRealTypes(Data[] data, Vector v, boolean keepDupl, boolean doCoordSys)
          Deprecated. Use getScalarTypes(Data[], Vector, boolean, boolean) instead.
static int DataUtility.getRealTypes(Data data, Vector v)
          Deprecated. Use getScalarTypes(Data, Vector) instead.
static int DataUtility.getScalarTypes(Data[] data, Vector v, boolean keepDupl, boolean doCoordSys)
          Obtains a Vector consisting of all ScalarTypes present in an array of Data objects' MathTypes.
static int DataUtility.getScalarTypes(Data data, Vector v)
          Obtains a Vector consisting of all ScalarTypes present in a Data object's MathType.
static DataImpl DataUtility.makeLocal(Data data)
          Converts a remote Data object to a local Data object.
static DataImpl DataUtility.makeLocal(Data data, boolean printStackTraces)
          Converts a remote Data object to a local Data object.