Using JPythonMethod's matrix and FFT functions
May, 2001
Introduction
(Note: in order to use these functions, you must install
JAMA)
A large number of matrix manipulation functions are available for
your use and are defined below).
Each of these returns a Data object. To illustrate their use,
here's a brief example:
# first, construct a 2 x 2 matrix in a VisAD field
matrix = field( [[1,2], [1,3]])
# now construct a 2 element vector
vector = field([2,1])
# solve the linear system
solution = solve(matrix, vector)
# print the solution
print solution[0], solution[1]
# this will print: 4.0 -1.0
Fast Fourier Transform (FFT)
- fft(field)
- ifft(field) // backward Fourier transform
Matrix manipulation routines
- chol(Data d) - return matrix Cholesky Decomposition of Data d
- cond(Data d) - return matrix condition of data (ratio of largest to
smallest singular value)
- det(Data d) - return matrix determinant of Data d
- eig(Data d) - return matrix Eigenvalue Decomposition of Data d
- inverse(Data d) - return matrix inverse of Data d
- lu(Data d) - return matrix LU Decomposition of Data d
- matrixMultiply(data1, data2) - return matrix multiply of (data1 * data2)
- norm1(Data d) - return matrix one norm of data (maximum column sum)
- norm2(Data d) - return matrix two norm of data (maximum singular value)
- normF(Data d) - return matrix Frobenius norm of data (sqrt of sum of
squares of all elements)
- normInf(Data d) - return matrix infinity norm of data (maximum row sum)
- qr(Data d) - return matrix QR Decomposition of data
- rank(Data d) - return matrix effective numerical rank (from SVD) of data
- solve(Data d1, Data d2) - return matrix soluton X of (d1 * X = d2)
- svd(Data d) - return matrix Singular Value Decomposition of data
- trace(Data d) - return matrix trace of data (sum of the diagonal elements)
- transpose(Data d) - return matrix transpose of data
Back to the home page