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1 INTRODUCTION  

Floods are the most devastating, frequent, and widespread natural disaster, affecting about, on 
average, 80 million people per year around the world, and causing more death and property damage 
than any other natural phenomena (Kundzewicz and Schellnhuber, 2004; IFRC, 2008). Every year, 
flood disasters cause huge economic losses and social disruption all over the world (IFRC, 2008).  

Because flood is a short-term event in large scale, satellite images show special advantages in 
flood mapping because these images can see the big pictures of floodwater with rapid update on the 
flood status. Thus near real-time flood mapping using satellite imagery is invaluable to river 
forecasters and decision-makers for disaster monitoring and relief efforts. In fact, satellite-based flood 
detection has a history that dates back to the 1970’s. NOAA/VHRR (Very High Resolution 
Radiometer) and NOAA/AVHRR (Advanced Very High Resolution Radiometer) imagery served as 
the main data sources in flood/standing water detection prior to the development of MODIS (Moderate 
Resolution Imaging Spectroradiometer). Many case studies have been conducted to analyze severe 
flood events all over the world. These studies laid a foundation in methods and approaches of flood 
detection with coarse-to-moderate-resolution satellite data (Wiesnet et al., 1974; Barton and Bathols, 
1989; Ali, 1989; Sheng and Xiao, 1994; Sheng et al., 1998; Sheng and Gong, 2001). Besides VHRR 
and AVHRR data, Landsat imagery, which are with 30-m spatial resolution, are also used in flood 
detection for disaster assessment and flood pattern analysis (Gupta and Bodechtel, 1982; Guptaand 
Banerji, 1985; Wang et al., 2002; Mueller et al., 2016; Fisher et al., 2016; Tulbure et al., 2016). Radar 
satellites and imagers such as Radarsat, SAR, TerraSAR-X and Sentinel-1and so on are even more 
popular in flood mapping because these images can penetrate cloud cover and derive flood 
information in cloud conditions that optical sensors fail with (Brakenridge et al., 1993; Matgenet al., 
2007; Schumannet al. 2007; Martinis et al., 2009; Matgenet al., 2011; Pulvirentiet al., 2011; Martinis 
et al., 2013). 

Although Landsat and Radar imagery demonstrate excellent capability in flood mapping, the 
major drawbacks of these sensors are their narrow swath width and long revisit period. Because most 
floods are short-term events, it is not realistic to rely on these images completely for flood mapping 
and management. In comparison, moderate-spatial-resolution satellites provide steadier and 
lower-cost data sources for near real-time flood mapping. After EOS-Terra (EOS, Earth Observing 
System) was launched in 1999, MODIS (Moderate Resolution Imaging Spectroradiometer) has 
gradually become the preferred satellite instrument for flood detection because of its daily global 
coverage and higher spatial resolution of the visible, near infrared (250m) and short-wave infrared 
(500m) channels rather than the 1km resolution channels with AVHRR (Gumley and King, 1995; 
Brakenridge and Anderson, 2006). Newer algorithms such as the decision-tree approach and open 
water likelihood method have used MODIS to more accurately detect flooding and standing water 
(Sun et al., 2011; Ticehurst et al., 2014; Ticehurst et al., 2015). The continuous observations from 
MODIS also make it possible to analyze flood inundation dynamics and generate global water mask 
from multiple-year detected results (Carroll, et al., 2009; Andrimont et al., 2012; Huang et al., 2014). 
In 2011, an experimental global flood detection system using MODIS imagery was released by NASA 
(National Aeronautics and Space Administration) (http://oas.gsfc.nasa.gov/floodmap). This system 
processes near real-time MODIS data and generates 1-day, 2-day, 3-day and 14-day composite global 
flood products at 10°×10° tiles from TERRA-MODIS and AQUA-MODIS (Brakenridge, 2011). The 
system provides systematic datasets with a robust interface to access the products. The multiple-day 
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composition process is applied mainly to filter cloud contamination, cloud shadows and terrain 
shadows, and produces multiple-day composite flood maps rather than near real-time ones. The 
problem with the multiple-day composition process is that some real floodwater may be lost in the 
composition process and it introduces a bias in the experimental MODIS flood maps. Even with the 
composition process, cloud shadows can persist in the MODIS flood product especially in high 
latitudes. More recently, the HAND (Height Above Nearest Drainage) algorithm has been applied to 
MODIS flood detection with better terrain shadow removal. The accuracy of MODIS flood products 
are still susceptible to deep terrain shadows that cannot be filtered by either multiple-day composition 
or HAND algorithm (Brakenridge, 2011; Liu et al., 2016). 

With the launch of Suomi-NPP (SNPP) in 2012, the on-board VIIRS (Visible Infrared Imaging 
Radiometer Suite) sensor has many advantages over MODIS in environmental and natural disaster 
monitoring and analysis. VIIRS imagery has moderate spatial resolution of 375m in the visible to 
infrared channels, wide swath coverage of 3040km, and relatively constant resolution across the scan. 
These new features, especially the improved spatial resolution in the short-wave infrared channel 
(centering at 1.61μm) which is a key channel for flood detection, make the VIIRS data an excellent 
source for near real-time flood mapping. With the support from JPSS Program through a 
demonstration, the VIIRS flood mapping algorithm and products have been under-developed since 
2013. After more than 6 years’ development, the VIIRS flood mapping algorithm successfully solves 
the critical issues for flood automations and the products reach a level for operational production.  

The VIIRS flood products, which include a VIIRS near real-time flood product, daily composited 
and 5-day composited flood products, are designed for the Suomi-NPP &NOA-20/VIIRS imagery to 
reflect flood extent in water fractions (open water percentage in a VIIRS 375-m pixel). The algorithm 
consists of six major processes including water detection, cloud shadow removal, terrain shadow 
removal, minor flood detection, floodwater fraction retrieval, and floodwater determination. The 
framework of the algorithm is designed to cover most of the complicated situations of water surface 
under different underlying conditions and geometric angles in VIIRS imagery. To provide reliable 
performance, floodwater is divided into supra-snow/ice water and supra-vegetation/bare land water 
with consideration of sun-glint contamination and salt-like clay background. Water detection is done 
using a combination of methods from the decision-tree technique (C4.5), threshold method, histogram 
method to change detection approach. Because of the similarity in spectral features among cloud 
shadows, terrain shadows and water surface in the visible to infrared channels, the classification 
methods fail to separate cloud shadows and terrain shadows from water surface, which causes severe 
problems for flood detection. To solve these issues, a geometry-based method is applied to 
differentiate cloud shadows from water pixels, and an object-based method is developed to remove 
terrain shadows from water pixels. Based on the water detection results, water retrieval algorithms are 
further applied to retrieve water fractions for supra-vegetation/bare land floodwater to derive more 
accurate flood extent from the 375-m VIIRS imagery. For water surface without sun-glint 
contamination, a dynamic nearest neighboring searching (DNNS) method is used to retrieve water 
fractions by considering the mixture of land types in a water pixel, and the histogram method is 
applied to estimate water fractions of water pixels with minor to moderate sun-glint contamination. 
The retrieved water fractions are compared with a water reference map generated from water layer in 
the 30-m National Land Cover Dataset (NLCD), the 250-m MODIS global water mask (MOD44W) 
and the 150-m global water bodies from ESA’s (European Space Agency) Climate Change Initiative 
( CCI) to determine floodwater. With the near real-time VIIRS flood detection results, daily and 5-day 
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composited flood products are generated through a maximal water fraction composition process to 
derive the maximal flood extent during the periods. 

This Algorithm Theoretical Basis Document (ATBD) describes in detail the procedures for 
developing VIIRS flood mapping algorithms and using VIIRS flood products. It includes a description 
of the requirements and specifications of the JPSS VIIRS flood products and some specific 
information about the VIIRS that is relevant to the derivation of the VIIRS Flood products. The main 
part of the ATBD is a description of the science of the VIIRS flood mapping algorithm, followed by 
the assumptions and limitations of the algorithm and products in flood detection. 

1.1 Product Overview 

1.1.1 Product Description 
The VIIRS flood product, referred as VFM, is a newly developed product generated from 

Suomi-NPP and NOAA-20 VIIRS imagery to depict flood extent in floodwater fractions. Here, flood 
is defined as an overflow of water that submerges or "drowns" land that is normally dry. With the 
definition, the floodwater detected in VFM includes disastrous floodwater caused by 
ice-jam/snow-melting or intensive rainfall that brings about damages or economic loss, and 
non-disastrous floodwater such as tides, agriculture-related water and other 
hydrologic-activity-related water. That VFM is a newly developed product means there are no existing 
operational algorithms or products to inherit from the previous satellite missions or programs. 

VFM includes four products: VIIRS global near real-time gridded flood product in granules from 
Suomi-NPP and NOA-20 between 80°S and 80°N, VIIRS near real-time gridded flood product in the 
NWS domains from Suomi-NPP and NOA-20, VIIRS global daily composited flood product and 
VIIRS global 5-day composited flood product in 136 AOIs covering the global land regions between 
60°S and 75°N. Table 1-1 lists all the products produced in the operational system. 

Table 1-1 VIIRS flood products produced in the operational system 

Product name Spatial 
resolution 

Geographic 
Coverage 

Temporal 
Coverage Description 

Suomi-NPP 
&NOAA-20/VIIRS near 
real-time flood product 

375 m 
Global land 
between 80°
S and 80°N 

DOY: 1 ~ 59, or 
291 ~ 366: θ ≤85° 
(N), θ ≤76° (S) 

DOY: 60 ~ 99, or 
251 ~ 290: θ ≤80° 

DOY: 100 ~ 250: θ 
≤76° (N), θ ≤85° 
(S) 
DOY: Day of Year 
θ: Solar zenith 
angle 

Reflect the current 
flood status at the 
time of the overpass 

NWS regional 
Suomi-NPP 
&NOAA-20/VIIRS near 
real-time flood product 

375 m 

8 NWS 
domains in the 
CONUS and 
Alaska 

Reflect the current 
flood status at the 
time of the overpass 

Suomi-NPP 
&NOAA-20/VIIRS daily 
composited flood product 

375 m 

Global land 
between 60°
S and 75°N 
in 136 AOIs 

Reflect the daily 
maximal  flood 
extent from 
Suomi-NPP and 



NOAA  
  VIIRS Flood Mapping (VFM) Algorithm Theoretical Basis Document  

 
 

 

N: North 
Hemisphere 
S: South 
Hemisphere 

NOAA-20 

Suomi-NPP 
&NOAA-20/VIIRS 5-dy 
composited flood product 

375 m 

Global land 
between 60°
S and 75°N 
in 136 AOIs 

Reflect the maximal 
flood extent in the 
latest 5 days from 
Suomi-NPP and 
NOAA-20 

 

1.1.2 Product Requirements 
The requirements of VIIRS flood products are listed in Table 1-2. 

Table 1-2 Requirements of VIIRS flood products 

Product name Formats Latency Measurement 
range 

Product 
accuracy 

Suomi-NPP 
&NOAA-20/VIIRS near 
real-time flood product 

netCDF4  
3 hours after 
an overpass 
arrives 

Water fraction
≥25% 

80% under 
clear-sky 
conditions 

NWS regional Suomi-NPP 
&NOAA-20/VIIRS near 
real-time flood product 

netCDF4, 
geotiff and 
shapefile 

40 minutes 
after an 
overpass 
arrives 

Water fraction
≥25% 

80% under 
clear-sky 
conditions 

Suomi-NPP 
&NOAA-20/VIIRS daily 
composited flood product 

netCDF4, 
geotiff and 
shapefile 

6 hours 

Water fraction
≥25% 

80% under 
clear-sky 
conditions 

Suomi-NPP 
&NOAA-20/VIIRS 5-dy 
composited flood product 

netCDF4, 
geotiff and 
shapefile 

6 hours 

Water fraction
≥25% 

80% under 
clear-sky 
conditions 

 

1.2 Satellite Instrument Description 
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a critical sensor on-boarding 

Suomi-NPP, JPSS-1 or NOAA-20 and future JPSS series, providing over 60% of all the mission data 
products currently defined. There are 22 spectral bands covering spectral range from 412 nm to 12 μm 
with nominal spatial resolution from 375 m to 750 m. Among the 22 bands, there are five Imager 
bands with 375m spatial resolution in the visible (VIS) and infrared (IR) regions. The swath coverage 
of one scan reaches about 3040km with relatively constant spatial resolution across the scan. One 
particular advantage of VIIRS in comparison to other Imagers such as MODIS and AVHRR is that the 
short-wave infrared channel centering at 1.61μm is with spatial resolution 375 m, which provides a 
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key channel for reliable flood detection and floodwater fraction retrieval. Because Suomi-NPP and 
NOAA-20 are low-orbit satellites, all these features make the VIIRS imagery an excellent data source 
for flood mapping. Table 1-3 lists the channel specification of the four VIIRS Imager bands used for 
flood mapping. [Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) 
User’s Guide, NOAA Technical Report NESDIS 142, Washington D.C., 10 September, 2013, online 
at http://www.star.nesdis.noaa.gov/smcd/spb/nsun/snpp/VIIRS/VIIRS_SDR_Users_guide.pdf] 
 

Table 1-3 Spectral specifications of VIIRS four Imager bands used for flood detection 

VIIRS 
Bands 

Central 
Wavelength 
(µm) 

Bandwidth 

(µm) 

Wavelength 
Range 

(μm) 

Band 
Explanation 

Spatial 
Resolution 
(m) at nadir 

I1 (Vis)  0.64 0.08 0.60 - 0.68 
Visible/ 

Reflective 375 m 

I2 (NIR) 0.865 0.039 0.85 - 0.88 Near IR 375 m 

I3 (SWIR) 1.61 0.06 1.58 - 1.64 Shortwave IR 375 m 

I5 (IR) 11.45  1.9 10.5 - 12.4 Longwave IR 375 m 
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2 ALGORITHM DESCRIPTION 

A comprehensive description of the VIIRS flood detection algorithm and data flow is presented in 
this section.  

2.1 Processing Outline 
There are six major procedures included in the VIIRS flood mapping system: Swath projection, 

flood detection, mosaick process, daily composition, 5-day composition and image display. Fig. 2-1 
shows the system architecture and data flow. The Swath projection processes VIIRS SDR and EDR 
data from Suomi-NPP and NOAA-20 in the Imager bands (I-bands 01, 02, 03, 05), terrain corrected 
geolocation data (GITCO) and VIIRS enterprise cloud mask and projects the SDR data and EDR data 
into gridded granule data. The output from the swath projection process is used as the input of the 
flood detection process together with the ancillary datasets and outputs VIIRS near real-time flood 
detection results in granules for further mosaick process in the 8 NWS domains and the 136 AOIs 
covering global land between 60°S and 75°N. With the mosaicked data in the 136 AOIs, the daily 
composition composites the near real-time flood detection results and generates daily composited 
flood datasets from Suomi-NPP and NOAA-20. The daily composited flood datasets are further used 
as the input for 5-day composition process to derive VIIRS 5-day composited flood datasets. All the 
flood datasets are in netCDF format, and an image display process is applied on these netCDF datasets 
to generate VIIRS flood maps in geotiff and vector data in shapefile format. 

 
Fig. 2-1 Flowchart of VIRS flood mapping system 
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Among the major procedures, the VIIRS flood detection process has the core algorithm for flood 
mapping. The algorithm consists of six major processes including water detection, cloud shadow 
removal, terrain shadow removal, minor water detection, water fraction retrieval and floodwater 
determination. With the input data, the algorithm performs water detection using a combination of 
methods and approaches including decision-tree technique, threshold method, histogram method and 
change detection to differentiate among cloud, snow cover, river/lake ice, vegetation, bare land, 
supra-snow/ice water, supra-veg/bare land water without sun-glint contamination and supra-veg/bare 
land water with minor to moderate sun-glint contamination. Because cloud shadows and terrain 
shadows share similar spectral features with water surface, most shadow pixels are mixed with water 
pixels during the classification process. A geometry-based method is applied to remove cloud shadow 
pixels from water pixels, and then an object-based method is applied to remove terrain shadows pixels 
from water pixels. The rest water pixels are retrieved in water fractions and are used as seeds for minor 
water detection with change detection approach. With minor water detection, most of the water pixels 
with small water fractions are picked up and are applied in cloud shadow and terrain shadow removal 
afterward to remove potential shadow pixels. These new minor water pixels are also applied in water 
fraction retrieval to derive water fractions. Except supra-snow/ice water, which is used as a separate 
type in VIIRS flood maps, all the supra-veg/bare land water pixels are compared with water reference 
map to determine floodwater pixels in water fractions. Fig. 2-2 presents the process flow of VIIRS 
flood detection algorithm. Details of the algorithm will be presented in section 2.3.  
 

 
Fig. 2-2 Flow chart of VIIRS flood detection algorithm 
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2.2 Algorithm Input  
There are three kinds of input data for the VIIRS flood detection algorithm:  
• VIIRS SDR data in I-bands 01, 02 03, 05 and terrain-corrected geolocation data (GITCO);  
• VIIRS level-2 enterprise cloud mask;  
• Static ancillary datasets including land cover, land/sea mask, water reference mask, sun-glint 
lookup table,  DEM, climatology of land surface temperature and sea surface temperature, albedo 
climatology and pre-trained decision trees. 
Table 2-1 lists the specifications of VIIRS lelve-1 SDR data for flood detection, Table 2-2 shows 

the VIIRS lelve-2 EDR data for flood detection, and Table 2-3 lists all the static ancillary datasets used 
in VFM. 

Table 2-1 Specifications of VFM input VIIRS SDR data 

Input File Spatial 
Resolution Name Pattern Content Format 

VIIRS Imager 
band 01 

375m e.g. 
SVI01_j01_d20200225_t1909150_e1
910395_b11768_c202002261605560
32790_nobc_ops 

Visible channel 
reflectance centering at 
640nm 

HDF5 

VIIRS Imager 
band 02 

375m e.g. 
SVI02_j01_d20200225_t1909150_e1
910395_b11768_c202002261605560
32790_nobc_ops 

Near-infrared channel 
reflectance centering at 
865 nm 

HDF5 

VIIRS Imager 
band 03 

375m e.g. 
SVI03_j01_d20200225_t1909150_e1
910395_b11768_c202002261605560
32790_nobc_ops 

Short-wave infrared 
channel reflectance 
centering at 1.61μm 

HDF5 

VIIRS Imager 
band 05 

375m e.g. 
SVI05_j01_d20200225_t1909150_e1
910395_b11768_c202002261605560
32790_nobc_ops 

Thermal infrared 
channel brightness 
temperature centering 
at 11.45μm 

HDF5 

VIIRS 
terrain-correcte
d navigation 
data 

375m e.g. 
GITCO_j01_d20200225_t1909150_e
1910395_b11768_c20200226160606
186943_nobc_ops.h5 

Geometric angles, 
Geolocations 

HDF5 
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Table 2-2 Specifications of VFM input VIIRS level-2 EDR data 

Input File Spatial 
Resolution Name Pattern Content Format 

VIIRS 
Enterprise 
Cloud Mask 

750m e.g. 
JRR-CloudMask_v2r1_j01_prj_s202
002251909150_e202002251910395_
000.h5 

Cloud Mask, 
geolocations for 
Cloud Mask 

NetCDF4 

 

Table 2-3 Static ancillary datasets used by VFM 

Input File Name Pattern Source Format 

Global land cover at 1km 
resolution 

Global_land_cover_IGBP_2017_USGS_t
ypes.raw 

VIIRS surface type in 
2017 and AVHRR land 
cover dataset in 2000 

raw 

Global Digital Elevation 
Model at 375-m resolution 

Global_DEM375m_W180_W090_N90_S
90.raw, … 
Global_DEM375m_E090_E180_N90_S9
0.raw 

SRTM/DEM ASTER 
DEM 

raw 

Sun-glint lookup table Sun_Gliter_mask_005.dat Self-support raw 

Global land/sea mask at 
1km resolution 

lw_geo_2001001_v03m_1km.raw 
 

raw 

Global water mask VIIRS_Global_MOD44W_Water_Mask.r
aw 

MOD44W,  ESA’s 
global water mask, 
NLCD 2006 

raw 

Land/sea surface 
temperature 16-day 
climatology at 5km 
resolution 

AQUA_Daytime_LST_SST_Climatology
_NNN.raw 

MODIS LST/SST raw 

Global Albedo monthly 
climatology at 5km 
resolution in visible 
channel  

CMG-SMT-P0B1_ch1_{Channel 
number}.raw 

MODIS Albedo dataset raw 

Pre-trained decision trees 
and tree attribute files 

Tree_{tree number}_attr.txt 
Tree{tree 
number}_J48graft_{description}.txt 

Self-support txt 

User AOI definition file: to 
list the geographic 
information of each subset 

User_AOI_Definition.txt User defined txt 
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2.3 Theoretical Description 

2.3.1 Physical Description 

2.3.1.1 Physical basis for water detection 
Water detection using optical satellite data is primarily based on the spectral features of water 

surface in visible (Vis, centering at 650nm), near-infrared (NIR, centering at 865 nm) and short-wave 
infrared (SWIR, centering at 1610nm) channels (Wiesnet et al., 1974; Barton, 1989; Sheng and Xiao, 
1994). 

Without sun-glint contamination, the water surface has overall low reflectance in the Vis, NIR 
and SWIR channels. Compared to cloud and snow/ice, the reflectance of water surface in the Vis and 
NIR channels are much lower, which can be used as a primary feature to differentiate water from cloud 
and snow/ice in optical satellite imagery. Although the reflectance difference between water surface 
and vegetation or bare soil is much smaller, the spectral features in the Vis, NIR and SWIR channels 
can still be used to discriminate one from another. As shown in Fig. 2-3, water has higher reflectance 
in Vis channel than in NIR and SWIR channels. Vegetation is more reflective in the NIR channel than 
in Vis channel. Reflectance of bare land increases with increasing wavelength, with a maximum in 
SWIR channel, whereas the reflectance of water is close to 0 in this channel (Li et al., 2017). 

 
Fig. 2-3 Plot of reflectance of different land types from VIS to SWIR band range (Li et al., 2012) 
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With sun-glint contamination, however, the reflectance of water surface in the Vis, NIR and 
SWIR channels can be quite different, depending on how severe the sun-glint contamination is. More 
sun-glint contamination generally results in higher reflectance, especially in the NIR and SWIR 
channels (Cox, C., Munk, 1954; Montagner F, Billat V, Bélanger S, 2003). With minor to moderate 
sun-glint contamination, the reflectance of water surface in these channels is higher but still shows 
similar spectral patterns to non-sun-glint contaminated water surface in optical satellite imagery, and 
thus is detectable. Nevertheless, under severe sun-glint contamination, the reflectance of water surface 
is quite high, with the severest resulting in saturate spectral response from optical sensors in these 
channels, which makes it difficult to be differentiated from other types in satellite imagery. 

Although the spectral features of water surface in Vis, NIR and SWIR channels provide primary 
physical basis for water detection, the situation can be much more complicated in optical satellite 
imagery with moderate spatial resolution. This is because many floodwater pixels in 
moderate-resolution satellite imagery are a mixture of water, vegetation, bare soil, snow/ice and/or 
other land types. Suspending matter contained in water and the underlying conditions of water can 
affect the water signals received by sensors as well, resulting in different spectral features in different 
situations. Floodwater with vegetation and bare soil background or mixture (called supra-veg/bare 
land flood) shows blended spectral features with water and vegetation or bare soil. In comparison, 
floodwater with snow/ice background or mixture (called supra-snow/ice flood) demonstrates blended 
spectral features with water and snow/ice, which is quite different to supra-veg/bare land floodwater. 
The mixture feature of floodwater weakens water signals and the blended spectral properties make it 
difficult to discriminate floodwater from other land types especially from muddy land, cloud shadows 
and terrain shadows based on spectral characteristics.  

Although the reflectance of water in the Vis, NIR and SWIR channels varies with flood types, the 
reflectance in most situations still keeps a similar pattern with higher reflectance in the Vis channel 
than in NIR and SWIR channels. Therefore, indices such as NDVI (Normalized Difference Vegetation 
Index), NDSI (Normalized Difference Snow Index) and NDWI (Normalized Difference Water Index) 
can be more steadier and thus are quite effective in water detection (Rouse, et al., 1965; Sellers 1985; 
Xiao, et al., 2001; Gao, 1996; Ceccato, et al., 2002). NDVI, NDSI and NDWI are defined as follows: 

NDVI = !!"#"!$%&
!!"##!$%&

                                              (2-1) 

NDSI = !$%&"!'("#
!$%&#!'("#

                                             (2-2) 

NDWI = !!"#"!'("#
!!"##!'("#

                                          (2-3) 
In Equations (2-1) through (2-3), R$%& is reflectance in Vis channel, R'(! is reflectance in NIR 

channel, and R)*(! is reflectance in SWIR channel. These indices show similar to or even better 
discrimination capability in water detection than R$%&, R'(! and R)*(!. However, none of these 
indices differentiates floodwater from other land types independently. Instead, the combination of 
these variables is the basis of a robust flood detection technique. Fig. 2-4 presents six scatter plots of 
vegetation, bare land, water and cloud shadow from these six variables from 1-km NOAA-17/AVHRR 
images. From Fig. 2-4, all the variables show capability in differentiating water from vegetation and 
bare land to different extent, and thus can be used for water detection. However, none of them 
differentiates water from other types independently. One particular thing to mention in Fig. 2-4 is that 
most of the cloud shadow samples are mixed with water samples in all the plots, indicating similar 
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spectral features between the two and difficulty to differentiate one from the other by using these six 
variables. 

 
Fig. 2-4 Scatter plots of vegetation, water, bare land and cloud shadow in Vis (ch1), NIR (Ch2) and 

SWIR (Ch3) from NOAA-17/AVHRR 
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2.3.1.2 Physical description for cloud shadow removal  
Cloud shadow is cast by clouds on the ground or over other lower clouds. The shadowed area is 

typically darker than the non-shadowed area because of less irradiance, which makes it look alike 
floodwater in optical satellite imagery. As mentioned in section 2.3.1.1, because of the mixture feature 
of floodwater, it is difficult to differentiate floodwater from cloud shadows based on its spectral 
characteristics. Instead of spectral means, one feasible way to remove cloud shadows in optical 
satellite imagery is geometry-based method (Li et al, 2013; Khlopenko and Trishchenko, 2007). 

The physical basis to remove cloud shadows geometrically is to construct the relationship among 
the sun, satellite, cloud, and cloud shadow. The construction of the geometry relationship involves 
with the calculation of parallax distance and shadow length, which can be described using viewing 
point (V), object (O) and light source (S) in Fig. 2-5. A parallax is the apparent displacement or 
difference in the position of an object viewed along two different lines of sight and is measured by the 
angle or semi-angle of inclination between those two lines. As shown in Fig. 2-5, when viewing an 
object O with height  from different viewing points (V and V1), the position of O is located at 
different points (P and PO1) in the image plane, where P is the position obtained from a vertical 
viewing angle and represents the exact position of O without parallax. When O is viewed from point 
V1 at elevation angle θV, the corresponding position of O in the image plane is PO1 instead of P. The 
displacement from P to PO1 is an example of parallax. The distance between PO1 and P is the parallax 
distance, which can be measured using the object’s height and elevation angle. 

When an opaque object comes between an area and a source of radiation, thereby intercepting 
radiation to the area, a shadow occurs. Shadows can be viewed as a type of parallax if the light source 
is considered as a viewing point, and thus shadow length is calculated in a similar way to parallax 
distance. As shown in Fig. 2-5, when light source (S) has an elevation angle θS, line object PO with 
height  casts its shadow along line PSO. The shadow position of O locates at SO. The shadow length 
PSO can be calculated from the object height and light source elevation angle.  

h

h
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Fig. 2-5 Graph of parallax and shadow 

If the relationship shown in Fig. 2-5 is extended to an ideal plane, the relationship among the sun, 
cloud, cloud shadow and satellite can be constructed if the earth surface is considered as ideal plane. 
Fig. 2-6 shows a sketch of this geometry relationship, and the position of shadow point SO1 (𝑋!!", 𝑌!!") in 
the image plane can be expressed in equations (2-4) and (2-5): 

𝑋!!" = 𝑋"" +
#

$%&'#∗)
∗ sin𝜑* −

#
$%&'$∗)

∗ sin𝜑+                           (2-4) 

𝑌!!" = 𝑌"" −
#

$%&'#∗)
∗ cos𝜑* +

#
$%&'$∗)

∗ cos𝜑+                            (2-5) 

Where,  is the sensor viewing elevation angle,  is the sensor viewing azimuth angle,  is the 
solar elevation angle,  is the solar azimuth angle, 𝑟 is spatial resolution, h is cloud height, and (𝑋"", 
𝑌"").is the position of cloud in satellite imagery. 
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Fig. 2-6 Sketch of geometry relationship over ideal plane among the sun, cloud, cloud shadow and 

satellite 
The geometry relationship over spherical plane is more complex by considering the curvature of 

earth surface. The sketch of this model is presented in Fig. 2-7. In Fig. 2-7, if the position of a cloud 
pixel B (lon+,lat+) in satellite imagery is known, the position of that cloud pixel P(lon,,lat,) can be 
located by calculating an inverse cosine function of sensor azimuth angle φ+.  

lat, = sin"-[sin(lat+) × cos
,+.

!
+ cos(lat+) × sin A

,+.

!
B × cosφ+]   (2-6) 

lon, = lon+ + tan"-[
&%/0)×&%/

*)+
# ×23&(567))

23&*)
+
# "&%/(567))×&%/	(567*)

]                                     (2-7) 

The Earth’s radius is R and the arc PBF  is the parallax distance between real cloud position P and 
cloud position in satellite imagery B.  

With the cloud position P(lon,,lat,), cloud shadow position A (lon:,	lat:) in satellite imagery can 
be calculated with solar azimuth angle	φ, by considering shadow length PAF . 

lat: = sin"-[sin(lat,) × cos
,:.

!
+ cos(lat,) × sin A

,:.

!
B × cosφ,]  (2-8) 

lon: = lon, + tan"-[
&%/0*×&%/

*,+
# ×23&(567*)

23&*,
+
# "&%/(567*)×&%/	(567,)

]		                                 (2-9) 

In Equations (2-6) through (2-9), PAF  and PBF  can be calculated as arcs in a circle with radius R 
using shadow angle α and parallax angle βrespectively. The shadow angle α and parallax angle β 
are derived using Equation (2-10): 

δ = cos"- J(!#;)
-"(<!×!×23&-= 	#	;×(;	#>!)"!×23& =)-#	!-

>.@×!×(!#;)
K              (2-10) 
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Where, δ represents shadow angle α or parallax angle β, R is Earth’s radius,  is cloud height, 
and θ is zenith angle. 

In contrast, if shadow position A (lon:,	lat:) is known, then Equations (2-6) through (2-10) can 
also be used to predict cloud position B (lon+,lat+) on the spherical surface in satellite imagery. Thus, 
based on the geometry relationships among the sun, cloud, cloud shadow and satellite, the positions of 
cloud shadows can be predicted in the VIIR imagery. 

 
Fig. 2-7 Sketch of geometry model over spherical plane 

2.3.1.3  Physical description for terrain shadow removal 
Similar to cloud shadows, most terrain shadows cannot be differentiated from floodwater based 

on spectral features because of their spectral similarity in the Vis, NIR and SWIR channels. Because 
terrain shadows are formed due to the obstacle of solar radiation by surrounding higher topography, 
they always appear in mountainous areas with large surface roughness. Different to terrain shadows, 
due to water’s fluid feature, floodwater generally accumulates in low-lying areas with small surface 
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roughness. Therefore, surface roughness can be an effective variable to differentiate between terrain 
shadows and floodwater. 

The most straightforward variable to describe surface roughness is root-mean-square (RMS) 
height (𝛾), which is expressed in Equation (2-11) (Shepard et al., 2001): 

𝛾 = ( -
A"-

∑ (𝑧B − 𝑧̅)>A
BC- )

.
-                                                     (2-11) 

Where n is the number of sample points, 𝑧B is the height of the surface at point 𝑖, and 𝑧̅ is the mean 
height of the profile over all points. 

Other variables including the internal height difference (referred as 𝐷DE6/) between the higher 
surface mean height 𝑍̅; and the lower surface mean height 𝑍̅5, and the external height difference 
(referred as 𝐷/) between the mean height of neighboring non-shaded or non-flooding land pixels 𝑍̅56/F 
and the mean height of terrain shadow or floodwater pixels 𝑍̅, are also effective for surface roughness 
expression. 𝐷DE6/ and 𝐷/ are calculated in Equations (2-12) and (2-13), respectively: 

𝐷DE6/ = 𝑍̅; − 𝑍̅5                                                                  (2-12) 
𝐷/ = 𝑍̅56/F − 𝑍̅                                                                    (2-13) 

Fig. 2-8, Fig. 2-9 and Fig. 2-10 show the histogram plots of 𝛾, 𝐷DE6/ and 𝐷/ between terrain 
shadows and floodwaters.  From Fig. 2-8 to Fig. 2-10, terrain shadows show much larger surface 
roughness than floodwaters in these three variables, which provide the physical basis for terrain 
shadow removal. 

 

Fig. 2-8 (a) Histogram plot of RMS height (𝜸) on terrain shadows; (b) Histogram plot of RMS height 
(𝜸) on floodwaters   
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Fig. 2-9 (a) Histogram plot of 𝑫𝐦𝐞𝐚𝐧 on terrain shadows; (b) Histogram plot of 𝑫𝐦𝐞𝐚𝐧 on floodwaters 

 

Fig. 2-10  (a) Histogram plot of 𝑫𝐧 on terrain shadows; (b) Histogram plot of 𝑫𝐧 on floodwaters 

2.3.1.4 Physical description for water fraction retrieval  
For flood mapping with moderate-spatial-resolution satellite images, water fractions represent 

flood extent more accurately than water/no water masks. Therefore, the VFM retrieves water fractions 
for supra-veg/bare land floodwater, which is the most common flood type, to derive more accurate 
flood extent. Linear combination model based on multispectral linear mixture theory is the general 
way for sub-pixel fraction retrieval in optical satellite imagery (Sheng et al, DeFries et al., and Jiang et 
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al.). Based on the theory, the reflectance of a mixed water pixel combined with different land types in 
the visible to the SWIR channels can be expressed as: 

                                                                    (2-14) 

Where, R is total pixel reflectance, 𝑅B is the reflectance of a land type with fraction 𝑓B.  
Based on Equation (2-14), water fraction can be expressed in Equation (2-15): 

                                                              (2-15)  
 

In Equation (2-15),  represents the fraction of water, is the observed reflectance of a 
mixed pixel (comprised of water and land),  is the reflectance of land with similar mixture to 
the sub-pixel land component, and  is the reflectance of a water pixel with similar water type 
to the sub-pixel water component. 

For supra-veg/bare land floodwater without sun-glint contamination, due to the low reflectance of 
water surface in the Vis, NIR and SWIR channels comparing to the land, the sub-pixel land portion 
poses strong impact on water fraction retrieval. From Fig. 2-3, because different land types reflect 
differently, different mixture of land types show different mixed reflectance and thus affect the 
radiance of sub-land portion significantly. Therefore, the mixture structure of land types should be 
considered during water fraction retrieval. Different to supra-veg/bare land floodwater without 
sun-glint contamination, the signals from water portion of floodwater with minor to moderate sun glint 
contamination are much stronger in comparison to the land portion and the impact from the variety of 
land mixture structure in the sub-pixel land portion is relatively small and may be ignored.  

Among the Vis, NIR and SWIR channels, the reflectance of water surface in the SWIR channel is 
close to 0 and is much less variable with suspending matter and observing angles than the other two 
channels. This channel may be an ideal channel for water fraction calculation. 
 

2.3.2 Mathematical Description 

2.3.2.1 Water Detection 

2.3.2.1.1 Cloud and snow/ice masking 
The VFM uses VIIRS enterprise cloud mask to help mask cloud cover, but does not all depend on 

it. Instead, the VFM has cloud detection capability. The algorithm detects cloud first and then 
compares its cloud detection results with VIIRS cloud mask to confirm cloud cover and detection 
quality. For cloud detection, the VFM uses variables including 𝑅KBL, 𝑅MNO, 𝑅PQNO, NDVI, NDSI, 
NDWI and Tch5 (brightness temperature in I-band 05 centering at 11.45µm) to do a preliminary 
classification based on Mahalanobis Distance and threshold classification methods on desert and 
non-desert land types, which clusters pixels into three types: cloud, snow/ice and clear-sky land. This 
step differentiates most thick cloud cover that can be easily determined from other types, and the rest 
cloud cover may be included in snow/ice and clear-sky land. A snow/ice detection algorithm based on 
the variables 𝑅KBL, 𝑅MNO, 𝑅PQNO, NDVI, NDSI, and Tch5 along with the ancillary datasets including 
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land cover, land/sea mask, DEM, SST and LST climatology and albedo climatology, is then applied to 
further differentiate among cloud, snow/ice cover and clear-sky land. This step discriminates snow/ice 
cover and cloud cover counted in snow/ice during the first step. The rest cloud cover pixels, most of 
which are thin cloud and fractional cloud, are determined in the next water detection step based on 
decision-tree technique, threshold method and change detection approach. The final detected cloud 
cover is compared with VIIRS enterprise cloud mask to further confirm cloud cover. The detection 
quality is defined as: 

A pixel is defined in high-quality detection if it meets either of the following situations: 
1) It is detected as cloud in VFM and shows as confident cloud in VIIRS cloud mask; 
2) It is detected as non-cloud in VFM and shows as confident clear-sky in VIIRS cloud mask. 
A pixel is defined in low-quality detection if it meets either of the following situations: 
1) It is detected as cloud in VFM but shows as a confident clear-sky pixel in VIIRS cloud mask; 
2) It is detected as non-cloud in VFM but shows as confident cloudy in VIIRS cloud mask. 

2.3.2.1.2 Supra-snow/ice water detection 
Supra-snow/ice water detection is an additional step of snow/ice because most supra-snow/ice 

water is counted as snow/ice cover by VFM’s snow/ice detection algorithm. Unlike water with 
vegetation and bare land background, floodwater with a background of snow/ice reflects much higher 
in Vis and NIR channels due to the mixture of snow/ice signals, but keeps the feature with higher 
reflectance in the Vis channel than in the NIR channel (Liang et al., 2012; Johansson and Brown, 2013; 
Lesson et al, 2013). Because snow/ice and water reflect similarly in the SWIR channel, the detection 
of supra-snow/ice water mainly depends on variables:	𝑅KBL, 𝑅MNOand NDVI. Melting snow/ice surface 
and shadows cast on snow/ice surface can be easily confused with supra-snow/ice water because of 
similar spectral features in these three variables. To solve this problem, a new DNDVI variable is 
defined as the NDVI difference between a pixel and the surrounding snow/ice cover. With similar 𝑅KBL 
and 𝑅MNO, a melting snow surface and shadows cast on a snow surface have smaller negative DNDVI 
than supra-snow/ice water. Fig. 2-11 presents four scatter plots, collected from about 50 VIIRS 
granules mainly in Alaska during spring break-up seasons in 2014, 2015 and 2016, of supra-snow/ice 
floodwater (black), shadows over snow surface (blue) and melting snow surface (red). The 
relationship between 𝑅KBL and NDVI is in Fig. 2-11 (a). Fig. 2-11 (b) compares 𝑅MNOwith NDVI, 
scatter plot between	𝑅KBL and DNDVI is shown in Fig. 2-11 (c), and Fig. 2-11(d) shows 𝑅MNO and 
DNDVI. Fig. 2-11 illustrates that shadows on snow surfaces and melting snow surfaces have similar 
values in the three variables: 𝑅KBL, 𝑅MNO and NDVI, and overlap with the scatter plot of supra-snow/ice 
water (Fig. 2-11 (a) and Fig. 2-11 (b)). However, with DNDVI, the populations of melting snow 
samples and shadow samples separate from supra-snow/ice water samples (Fig. 2-11 (c) and Fig. 2-11 
(d)). Based on this feature, the combination use of these four variables provides effective 
supra-snow/ice water detection. 
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Fig. 2-11 Scatter plots of supra-snow/ice water (black), supra-snow/ice shadow (blue) and melting 

snow (red) surface in VIIRS imagery: (a) 𝑹𝑽𝒊𝒔 and NDVI; (b) 𝑹𝑵𝑰𝑹 and NDVI; (c) 𝑹𝑽𝒊𝒔 and DNDVI; 
(d) 𝑹𝑵𝑰𝑹 and DNDVI 

With the four variables, threshold segmentation is used as the main method for supra-snow/ice 
water detection. For a snow/ice pixel, if it meets both conditions in equation (2-16), it is directly 
classified as a supra-snow/ice water pixel without any further processing. If a snow/ice pixel meets the 
conditions in equation (2-17), then it is classified as a possible supra-snow/ice water pixel and will be 
tested further against the DNDVI variable. 

V 𝑅$%& ≥ 45%
NDVI ≤ −0.2                                        (2-16) 

V 𝑅$%& ≥ 40%
−0.2 < NDVI ≤ −0.04                               (2-17) 

The calculation of DNDVI is a dynamic process within a moving 50×50 window. For a possible 
supra-snow/ice water pixel, the maximal reflectance in visible channel (R$%&_D6Y) of all snow/ice 
pixels (based on the snow/ice detection results) in the neighboring 50×50 window is calculated (Liang 
et al., 2012; Johansson and Brown, 2013). If they meet conditions (2-18), snow/ice pixels are collected 
and used to calculate the average NDVI of background snow/ice surface (NDVI`̀ `̀ `̀ `). DNDVI is calculated 
by subtracting NDVI`̀ `̀ `̀ ` from NDVI of a possible supra-snow/ice water pixel. 

a
𝑅$%&_D6Y − 10% ≤ 𝑅$%& ≤ 𝑅$%&_D6Z

𝑅$%& ≥ 55%
NDVI ≥ −0.05

                            (2-18) 
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DNDVI is more effective in differentiating supra-snow/ice water from shadows over snow 
surface and melting snow surface. Based on the analysis on about 100 VIIRS granules, most shadows 
over snow surface with DNDVI below -0.05 have a reflectance less than 45% in visible channel, and 
those with reflectance larger than 45% in visible channel are mostly with DNDVI above -0.05. 
Melting snow surface is generally with DNDVI above -0.05. In comparison, supra-snow/ice water is 
with DNDVI below -0.07 and its DNDVI shows strong relationship with reflectance in near-infrared 
channel. Therefore, if a pixel meets condition (2-19), then it is removed from possible supra-snow/ice 
water pixels.  

DNDVI > −0.06                                                  (2-19) 
This process removes most melting snow surfaces and some shadows cast on snow surface from 

supra-snow/ice water pixels, and the rest shadow pixels and supra-snow/ice water pixels are further 
discriminated in cloud shadow removal using geometry-based method. 

2.3.2.1.3 Supra-veg/bare land water detection 
As the most common flood type, supra-veg/bare land floodwater detection is much more 

complicating than supra-snow/ice water detection due to the complex mixture of vegetation and bare 
land types. In mid to low latitudes, water surface is easily contaminated by sun-glint, which further 
complicates the situation. The detection uses a combination of methods from decision-tree approach, 
threshold method, histogram method to change detection with the variables: 𝑅KBL, 𝑅MNO, 𝑅PQNO, NDVI, 
NDSI, NDWI and Tch5 based on the spectral features of water, vegetation and bare land.  

The clear-sky land pixels determined by cloud and snow/ice detection are divided into two types: 
clear-sky land pixels with minor to moderate sun-glint contamination, and clear-sky land pixels 
without sun-glint contamination, by using a lookup table generated based on MERIS’s sun glint flag 
algorithm (Montagner F, Billat V, Bélanger S, 2003). The Decision Tree (DT) approach, which is a 
supervised machine learning technique to support decision making by converting complex data into a 
relatively simple and direct viewing structure  (Han, 2001), is selected as the major classification 
method to classify clear-sky land pixels into water, vegetation, bare land and cloud cover. For all 
decision tree algorithms, the process of predicting unseen instances is the same, and the differences 
come from the methods used to create the tree structures. The splitting criterion, stop-splitting rule, 
class assignment rule, and pruning method can be used in the tree generation (Quinlan, 1993). Many 
kinds of decision-tree algorithms have been developed based on different splitting criteria. Most 
notable trees include the J48graft or J48 (based on the C4.5 algorithm and was originally proposed by 
Quinlan (1993)), NBTree (a Naïve Bayes/Decision Tree hybrid (Kohavi, 1996)), Random Tree (RT), 
Random Forest (Breiman, 2001), REP Tree, BFTree, Decision Stump (DS), FT (Final Tree), and 
CART (Classification and Regression Trees) (Breiman et al., 1984) and so on. Although most of the 
tested DT algorithms have good discrimination capability, the J48graft/J48 based on the C4.5 
algorithm has the best accuracy according to the test results, and thus is selected as the decision tree 
algorithm for supra-veg/bare land water detection. The basic strategy of the C4.5 algorithm is to select 
an attribute that will best separate the samples into individual classes by an ‘Information Gain Ratio’. 
The objective is to produce the most accurate separation with the least amount of information (Han et 
al., 2001). The calculation of the ‘Information Gain Ratio’ is expressed from Equations (2-20) to 
(2-23). 

Let S be the training set consisting of s data samples, and s (Ci) be the number records in S that 
belong to class Ci (i=1, 2… m) out of m classes. The information needed to classify S is: 
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                                                 (2-20) 
Hence, the amount of information needed to partition S into {S1, S2…Sv} by attribute A (A has v 

distinct values) is: 

                                                 (2-21) 
And, the gain to classify S by attribute A is: 

                                           (2-22) 
Then the ‘Information Gain Ratio’ is computed as: 

                                                 (2-23) 
Based on the C4.5 algorithm, a collection of 600,000 samples from more than 500 VIIRS granules 

covering North America, Africa, Europe, Asia and Australia over different land cover types under 
different solar zenith angles is collected to train decision trees. The samples include four categories: 
water, bare land, vegetation and cloud cover. For water category, the samples include a wide variety of 
water surfaces including clean water, turbid water, wetland, water with blue-green algae, water surface 
with minor to moderate sun-glint contamination and so on. Because of the existence of a mixed 
structure for most pixels in coarse-to-moderate resolution satellite data, the spectral properties of 
sub-pixel areas of land can significantly affect the total reflectance of mixed water pixels. Hence, 
water might be detected differently over desert and forest. A well-trained tree from a desert area may 
fail to correctly detect water in forest areas. To reduce the uncertainty from the variance of sub-pixel 
land areas, a VIIRS global land cover type dataset based on global land cover from AVHRR and IGBP 
land cover, later updated by VIIRS surface type data in 2017, is introduced to assist the classification. 
For all clear-sky pixels, a J48graft tree is applied to make a preliminary classification by dividing the 
pixels into water, mixed water, vegetation, bare land and cloud. New samples over land cover types 
that have poor classification accuracy are then collected to train new decision trees. The new decision 
trees are utilized to do classification over specific land cover types. Altogether16 decision trees are 
generated for supra-veg/bare land water detection under different conditions. Fig. 2-12 shows an 
example of the tree structure derived from the C4.5 algorithm for the discrimination of water from bare 
land. The tree employs a case's attribute values to map it to a leaf, for designating one of the classes. 
The number in brackets following each leaf equals the number of training instances that are mapped to 
this leaf, and the second number after “/”in brackets (if it appears) is the number of instances that are 
misclassified to this leaf. A non-integral number of cases may arise. This is because when the value of 
an attribute in the tree is not known, DT splits the case and sends a fraction down each branch. The 
node in the upper level of the tree has a higher information gain ratio than in the lower level node in the 
classification. Therefore, as shown in Fig. 2-12, attributes/parameters like ch3, which is 𝑅PQNO, and 
appears at the root node of the tree, is more important than those at the lower levels, such as NDSI and 
the reflectance in the visible channel 𝑅KBL (ch1) for identifying water from bare land.  
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Fig. 2-12 An example of tree structure derived from the decision tree algorithm (Sun et al., 2012) 

Although C4.5 algorithm shows capability to discriminate water from vegetation, bare land and 
thin cloud cover, the dynamic features of land surface from vegetation change, snow/ice cover, 
observing angles and other types such as burnt scars, urban constructions, dust storms and so on may 
bring uncertainty to the classification. The DT trees clusters water or water-similar pixels into water 
category. Some of DT-classified water pixels need to be further determined through post analysis 
using threshold method, histogram method and change detection, and the rest such as shadows can 
only be determined by shadow removal algorithms based on geometry and topography, which are 
described in sections 2.3.2.3 and 2.3.2.4. Some typical cases that require further confirmation through 
post analysis are listed as follows: 

1) Dark volcanic land case: The DT classification may fail to discriminate water from dark 
volcanic land. In this situation, by flagging the known volcanic land in the water reference map, over 
these regions, if a dark volcanic land pixel is classified as water, it must meet the condition that its 
NDWI is above 0.25. Otherwise, it is classified as dryland. With this condition, most dark volcanic 
land pixels are removed from water pixels, and the rest are further removed through topography 
analysis during terrain shadow removal. 

2) Moist vegetation land case: In highland such as Alaska, the moisture land is easily detected as 
water. If such a pixel is firstly detected as water, but then detected as vegetation under a DT tree for 
solar zenith angle larger than 40 degrees, then it is further determined with histogram method and 
change detection by comparing its 𝑅KBL, 𝑅MNO, NDVI, NDSI and Tch5 with the average background 
values in a moving 200 ×200 window. It is re-classified as water only if it meets condition (2-24): 

⎩
⎨

⎧ 𝑅,-. ≥ 𝑅/0+33333 + 5%
𝑅123 ≤ 𝑅456333333 − 4%

NDSI ≥ 0.2
𝑇789 ≥ 𝑇:#9333333, 𝑜𝑟, NDSI ≥ 0.3	

                                                                       (2-24) 
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3) Water under large solar zenith angles: Under large solar zenith angles, the DT algorithm 
may cause more mistakes for water detection. To reduce the false detection, the classified water pixels 
with solar zenith angles above 45° and NDVI above 0.0, they are further confirmed by comparing the 
𝑅MNO and 𝑅PQNO with those from background dryland. If such a pixel is with  𝑅MNO 6% less than the 
background dryland and 𝑅PQNO 5% less than the background dryland, then it is detected as water. 
Otherwise, it is classified as dryland. 

4) Sun-glint contaminated water flag: In inland, water under sun-glint contamination is 
classified with DT algorithm together with water without sun-glint contamination. Some water with 
moderate sun-glint contamination can easily be classified as bare land because of the increased 
reflectance in the SWIR channel. Therefore, post analysis is done over sun-glint contaminated regions 
flagged by the sun-glint lookup table. If a pixel is located in minor to moderate sun-glint 
contamination region and is detected as water or mixed water, then if its 𝑅KBL is above 10%, and 𝑅PQNO 
is above 6%, then it is flagged as a sun-glint contaminated water pixel. If a pixel is located in minor to 
moderate sun-glint contamination region and is classified as bare land, it is classified as sun-glint 
contaminated water if it meets condition (2-25): 

E

𝑅,-. > 15%
𝑅;<23 > 10%
NDSI ≥ 0.08
NDVI ≤ 0.05	

 , or,  E

11% < 𝑅,-. < 18%
𝑅;<23 > 9%

0.04 ≤ NDSI ≤ 0.08
0.05	 < NDVI ≤ 0.11	

                                               (2-25) 

5) Urban land case: Urban land with some thin snow or aerosol can be easily detected as water 
due to decreased reflectance in the SWIR channel but increased reflectance in the Vis and NIR 
channels. This is more common in Asia countries over some large urban regions with air pollution. 
Sensor zenith angles can affect the detection results when no atmosphere correction is done on the data. 
Therefore, a NDSI threshold is set under different sensor zenith angles to reduce the false detection. If 
an urban land pixel is classified as water by the DT algorithm, in northern hemisphere with longitude 
between 60°E and 180°E it must meet condition (2-26), and in other regions it must meet condition 
(2-27): 

K𝑁𝐷𝑆𝐼 ≥ 10, 𝑤ℎ𝑒𝑛	𝜃 ≤ 45°,
𝑁𝐷𝑆𝐼 ≥ 15, 𝑤ℎ𝑒𝑛	𝜃 > 45°                                                                        (2-26) 

K𝑁𝐷𝑆𝐼 ≥ 2, 𝑤ℎ𝑒𝑛	𝜃 ≤ 45°,
𝑁𝐷𝑆𝐼 ≥ 4, 𝑤ℎ𝑒𝑛	𝜃 > 45°                                                                        (2-27) 

With the DT algorithm and post analysis, most water pixels with water fractions above 50% or so 
according to the statistics are successfully detected from the VIIRS imagery, although most cloud 
shadows, terrain shadows and some dark volcanic land are mixed in, which are removed with cloud 
shadow removal and terrain shadow removal algorithms. 

2.3.2.2 Cloud shadow removal 
All the water pixels including supra-snow/ice water and supra-veg/bare land water are applied in 

geometry-based cloud shadow removal algorithm to remove cloud shadow pixels from VIIRS flood 
maps. Based on the geometry models over ideal plane and sphere surface described in 2.3.1.2, cloud 
shadow positions can be predicted if cloud height is known. However, due to the uncertainty of cloud 
heights both in calculation and availability, the prediction may not be accurate. To reduce the 
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uncertainty from cloud heights, an iteration method is developed to construct the one-to-one 
relationship between cloud and cloud shadow using a group of adjacent cloud and cloud shadow pixels 
(Li et al., 2013). The one-to-one relationship is constructed based on two assumptions: 1) ignoring 
cloud thickness (height between cloud base and cloud top), one cloud pixel has at most one 
cloud-shadow pixel on the ground or over another piece of lower cloud; 2) a small portion of a cloud 
has similar height at each point. Thus, cloud height can be initially estimated using cloud top 
temperatures and nearby clear-sky land surface temperatures under average atmosphere temperature 
profiles, and then iterated until the one-to-one relationship is established between cloud pixels and 
cloud shadow pixels. If the estimated cloud height is lower or higher than the cloud’s actual height, 
then some shadow points might not have corresponding cloud points, and some cloud points might fail 
to locate their corresponding shadow points. Fig. 2-13 presents the simple concept of this method on 
the one-to-one relationship with the right cloud heights. In Fig. 2-13, three neighboring cloud points A, 
B and C have a height . Points A, B and C cast their shadows at Points SA, SB and SC (Fig. 2-13 Left). 
When the cloud height is estimated to be ∆h less than the actual height (Fig. 2-13 Middle), 
cloud-shadow positions of A and B are searched in points SB and SC, leaving shadow point SA without 
a corresponding cloud point; thus, cloud point C has no shadow. When the cloud height is estimated to 
be ∆h higher than the actual height (Fig. 2-13 Right), cloud-shadow points of B and C are searched in 
points SA and SB, leaving cloud point A with no shadow and shadow point SC without cloud. Only 
when cloud height is estimated accurately can this one-to-one relationship be established for a group 
of neighboring cloud or cloud-shadow pixels.  

 

Fig. 2-13 Cloud and cloud shadow inter-determination with multiple points Left: normal cloud height; 
Middle: lower cloud height; Right: higher cloud height 

With this method, cloud shadow pixels are determined by estimating cloud heights until the 
chosen shadow pixels correspond to cloud pixels. For a presumptive cloud shadow pixel, the cloud 
height is estimated from 0.5 km to 14 km until a cloud pixel is found using the geometric models. The 
brightness temperature of this cloud pixel is subsequently used to calculate a more accurate cloud 
height using atmosphere profile. Because the cloud height is an approximation, a new cloud-height 
iteration with 2 km above and below the current cloud height is performed. In this new cloud-height 
iteration, the found cloud pixel is used to predict a cloud-shadow pixel with the geometric relationship. 
If a shadow pixel is located, then the cloud height is applied to the nearby cloud and cloud-shadow 
pixels to test their one-to-one relationship. If all of the cloud and cloud-shadow pixels in the 
cloud-height iteration have corresponding cloud-shadow and cloud pixels, respectively, then the cloud 
height is estimated correctly. Thus, all the presumed cloud-shadow pixels determined by the 
cloud-height iteration are flagged as cloud shadows, and the cloud-height iteration terminates. 
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Alternatively, if this one-to-one relationship is not established before the iteration is terminated, then 
the presumptive cloud-shadow pixel is flagged as water. In this manner, most of the cloud shadows are 
removed from water pixels. Fig. 2-14 presents a cloud shadow removal example from VIIRS imagery. 
If without cloud shadow removal, most cloud shadows shown in the VIIRS false-color image (Fig. 
2-14 (a)) were misclassified as flooding waters (Fig. 2-14 (b)). After applying the cloud shadow 
algorithm, these cloud shadows were accurately identified and removed from the VIIRS flood map 
(Fig. 2-14 (c)). 

 
Fig. 2-14.  (a) VIIRS false-color image, (b) VIIRS flood map without cloud shadow removal, and (c) 
VIIRS flood map after cloud shadow removal, on May 30, 2013 at 22:48 (UTC) 

2.3.2.3 Terrain shadow removal 
Terrain shadow removal is done after cloud shadow removal based on the surface roughness 

analysis described in section 2.3.1.3. Because 𝛾, 𝐷DE6/ and 𝐷/ are all calculated based on a group of 
pixels, water pixels are clustering in groups with a neighboring search method, and the clustered water 
pixels are called a water object or a water polygon.  

If a water object meets condition (2-28), then this object is flagged as a terrain shadow: 

𝛾	 ≥ 60, or, e

𝛾7; ≤ 𝛾 < 60
𝐷6[E ≥ 𝐷6[E_7;
|𝐷A| 	≥ 3
𝑁\ ≤ 1

, or, e

𝛾7; + 5 ≤ 𝛾 < 60
𝐷6[E ≥ 𝐷6[E_7; + 20

|𝐷/| 	≥ 3
𝑃\ ≤ 5%, 𝑎𝑛𝑑	𝑁\ > 1	

                      (2-28) 

Where, 𝑁\ is the total normal water pixels calculated from the water reference map, 𝑃\ is the the 
percentage of normal water pixels in a water object, 𝛾7; represents the dynamic threshold of 𝛾, 
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𝐷DE6/_7; is the dynamic threshold of 𝐷DE6/, and 𝐷/_7; is the dynamic threshold of 𝐷/. 𝛾7;, 𝐷DE6/_7; 
and 𝐷/_7; are related to the total water/shadow pixels (N), and the total length in the horizontal (dx) 
and vertical (dy) directions of an object.  

The derivation of 𝛾7;(d𝑥, 𝑑𝑦, 𝑁), 𝐷DE6/_7;(d𝑥, d𝑦, 𝑁) and 𝐷/_7; is quite empirical based on a lot 
of tests using VIIRS data over wide areas under different solar zenith angles. Based on the statistics on 
more than 10,000 VIIRS granules over North America, South America, Asia, Europe, Africa and 
Oceania year around, 𝐷/_7; is set as -3, and the other two are determined as follows based on N,	𝑁\, dx 
and dy : 

If N < 25,	𝛾7; is set as 15, 𝐷6[E_7; is 35. 
If N ≥ 25, 𝛾7; and 𝐷DE6/_7; are calculated using Equations (2-29) and (2-30): 

𝛾7; = 0.12 × max(d𝑥, d𝑦) + 18                                         (2-29) 
𝐷DE6/_7; = 0.2 × max(d𝑥, d𝑦) + 50                                   (2-30) 

Even if 𝛾, 𝐷DE6/ and 𝐷/ meet the thresholds, some real floodwater objects may be removed as 
terrain shadows. To maximally avoid this situation, 𝑁\ and the percentage of normal water pixels (𝑃\) 
are used along with 𝛾, 𝐷DE6/ and 𝐷/. This is because most floodwater happens around normal water 
bodies such as rivers, lakes or reservoirs and hence if an object is a real floodwater, there should be 
some normal water pixels within the object. If an object is without any normal water pixels, then the 
object is taken as terrain shadows as long as 𝛾, 𝐷DE6/ and 𝐷/ meet the defined thresholds. If 𝑁\ is 
larger than 1, but the percentage of normal water pixels (𝑃\) is less than 5%, the object is to be 
determined under an increasing thresholds than calculated ones from Equation (2-29) and (2-30). For 
VIIRS imagery, 𝛾7; + 5 and 𝐷DE6/_7; + 20 are utilized for removal in this situation. 

With the method, more than 95% terrain shadows can be removed from VIIRS flood maps. 
Additionally, the method also helps remove some other false water detection such as some residual 
cloud shadows, dark volcanic land and burn scars (Li et al., 2015). Fig. 2-15 demonstrates an example 
on terrain shadow removal with this method. If without applying the terrain shade removal algorithm, 
most terrain shadows along the mountains in the VIIRS false-color image (Fig. 2-15 (a)) were 
misclassified as flooding water (Fig. 2-15(b)). After applying the method, these terrain shadows were 
successfully identified and are removed from the VIIRS flood map (Fig. 2-15(c)).  
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Fig. 2-15 (a) VIIRS false-color image, (b) VIIRS flood map without terrain shade removal (b), and (c) 
VIIRS flood map after terrain shadow removal, on Nov. 15, 2014 at 21:02 (UTC). 

2.3.2.4 Water fraction retrieval 
As described in section 2.3.1.4, the VFM retrieves water fractions for supra-veg/bare land 

floodwater. For supra-veg/bare land water without sun-glint contamination, a dynamic nearest 
neighboring searching method is used by considering the mixture structure of sub-pixel land portion, 
and for supra-veg/bare land water with minor to moderate sun-glint contamination, histogram method 
is applied. 

2.3.2.4.1 Dynamic Nearest Neighboring Searching (DNNS) method  
As shown in Fig. 2-3, the reflectance of clean water in the SWIR channel is close to 0. Although 

the reflectance may increase slightly with suspending matter, compared to vegetation and bare land, 
the reflectance of water in this channel can still be ignored (K. Kallio, 1999; Giordano, 2000; 
Balkanov, 2003). Therefore, the reflectance of a mixed water pixel in this channel is mainly from land 
with a total fraction of (1 − 𝑓]). For a mixed water pixel, the reflectance in the Vis, NIR and SWIR 
channels can be expressed from Equations (2-31) to (2-33). 

𝑅KBL = (1 − 𝑓]) ∗ 𝑅KBL_^_A` + 𝑓] ∗ 𝑅KBL_]_abc                             (2-31) 
𝑅MNO = (1 − 𝑓]) ∗ 𝑅MNO_^_A` + 𝑓] ∗ 𝑅MNO_]_abc                           (2-32) 
𝑅PQNO = (1 − 𝑓]) ∗ 𝑅PQNO_^_A`                                                    (2-33) 
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With equations (2-31) to (2-33), because the reflectivity of a surface type is fixed under the same 
observing conditions, then the ratios O/01

O2345
 and  O645

O2345
 , which are mainly affected by the percentages 

of surface types, can reflect the mixture structure of land types.  
Based on Equations (2-31) to (2-33), the ratios O/01

O2345
 and  O645

O2345
 of a mixed water pixel can be 

written as: 
O/01_809
O2345_809

≈ O/01_:;<=
O2345_:;<=

+ 𝑓]
O/01_>;?@A
O2345_809

                                   (2-34) 

O645_809
O2345_809

≈ O645_:;<=
O2345_:;<=

+ 𝑓]
O645_>;?@A
O2345_809

                                   (2-35) 

 
By transmutation, Equations (2-34) and (2-35) can be written as: 

O/01_:;<=
O2345_:;<=

≈ O/01_809
O2345_809

− 𝑓]
O/01_>;?@A
O2345_809

                                   (2-36) 

O645_:;<=
O2345_:;<=

≈ O645_809
O2345_809

− 𝑓]
O645_>;?@A
O2345_809

                                   (2-37) 

For a mixed water pixel 𝑓] has a range from 0.0 to 1.0, and thus the ranges of the ratios O/01
O2345

 and  
O645
O2345

 have the following relationships: 
O/01_809
O2345_809

− O/01_>;?@A
O2345_809

< O/01_:;<=
O2345_:;<=

< O/01_809
O2345_809

                                   (2-38) 

O645_809
O2345_809

− O645_>;?@A
O2345_809

< O645_:;<=
O2345_:;<=

< O645_809
O2345_809

                                   (2-39) 

The relationships described in Equations (2-38) and (2-39) provide the range to search for the 
nearby pure land pixels that are with similar mixture structure of land types to the sub-pixel land 
portion. For VIIRS water fraction retrieval, because 𝑅KBL does not show significant difference over 
vegetation, bare land and water, and most water pixels with water fractions less than 50% are not 
detected by the DT algorithm, Equation (2-38) tends to cluster many undetected minor water pixels as 
the pure land pixels, which might result in under-estimated 𝑅de_^_A`. Therefore, only Equation (2-39) 
is applied to search for nearest neighboring dryland pixels. Because 𝑅PQNOvaries little with water types 
in comparison to 𝑅KBL and 𝑅MNO, the SWIR channel is used as the major channel for water fraction 
retrieval over supra-veg/bare land water without sun-glint contamination.  

For mixed pixels with large water fractions (for example,  is larger than 0.9), the radiance from 
the sub-pixel land portion in channel 6 is close to the sub-pixel water portion because of the small 
fraction of land. In this case, the reflectance of the water portion in this channel cannot be ignored and 
equation (2-39) may not be applicable or fail to search any effective dryland pixels nearby because of 
larger ratio values of O645

O2345
. However, since the total reflectance of a mixed water pixel in SWIR 

channel is also very low and close to a pure water pixel, the mixture structure of land types in the 
sub-pixel land portion does not show any significant impact on the total reflectance, which means any 

wf
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pure land pixel nearby can be used. Therefore, the average reflectance of nearby pure land pixels in 
channel 6 can be used as  for water fraction calculation from Equation (2-15). 

Although most pure water pixels can be defined from water reference map, many floodwater 
pixels are also with 𝑓] close to 1.0 and these pure floodwater pixels help derive more accurate 
𝑅de_]_abc for water fraction retrieval nearby than pure water pixels from lakes or ocean surface nearby 
in the water reference map. Generally, pure water pixels are with typical water spectral features and 
can be directly confirmed using NDVI and 𝑅PQNO. For VFM, if a water pixel meets the condition 
(2-40), it is defined as a pure water pixel: 

a
NDVI < −0.15
𝑅PQNO ≤ 6%
𝑅KBL 	≤ 30%

, or,a
NDVI < −0.1
𝑅PQNO ≤ 5%
𝑅KBL 	≤ 30%

, or, a
NDVI < −0.05
𝑅PQNO ≤ 2%
𝑅KBL 	≤ 30%

                           (2-40) 

Therefore, for the water fraction retrieval with the DNNS method, pure water pixels are firstly 
defined with condition (2-40), and for the rest mixed water pixels, clear-sky land pixels that satisfy 
Equation (2-39) are searched in a moving window from 25 to 100, depending on how many qualified 
pure land pixels are searched in the current window. The average or median reflectance of all searched 
land pixels is taken as 𝑅de_^_A`. If no land pixels are searched, then the average or median reflectance 
of all land pixels nearby is taken as 𝑅de_^_A` . The nearest pure water pixels are also aggregated to 
calculate the average or median channel reflectance as the reflectance of pure water 𝑅de_]_abc. With 
𝑅de_^_A` and 𝑅de_]_abc, water fraction 𝑓] is calculated with Equation (2-15). 

2.3.2.4.2 Histogram method  
Different to supra-veg/bare land water without sun-glint contamination, water with minor to 

moderate sun-glint contamination shows quite different spectral features. One important feature is that 
𝑅PQNO increases rapidly with sun-glint and the reflectance of water surface in this channel is not close 
to 0 anymore and thus cannot be ignored. Therefore, the DNNS method cannot be used for water 
retrieval in this situation. With more radiance from the sub-pixel water portion, the proportion of 
radiance from sub-pixel land portion decreases substantially, and the impact from mixture structure of 
land types in the sub-pixel land portion is relatively small and thus may be ignored. Therefore, the 
histogram method is used for water fraction retrieval in this situation (Sheng et al., 2001).  

For a confirmed water pixel with sun-glint contamination, the average or median reflectance of all 
land pixels in the neighboring 100×100 moving window is taken as 𝑅de_^_A`. The average or median 
reflectance of all pure water pixels with sun-glint contamination in the neighboring moving window 
from 100 to 400 is taken as 𝑅de_]_abc, depending on the number of searched pure water pixels with 
sun-glint contamination in the current window. If no pure water pixels with sun-glint contamination 
are searched, then 𝑅de_]_abc is calculated from all the pure water pixels searched in the neighboring 
moving windows sizing from 100 to 400.  

With 𝑅de_^_A` and 𝑅de_]_abc, water fraction 𝑓] is calculated with Equation (2-15). 

2.3.2.5 Change detection for minor water extraction 
As mentioned in section 2.3.2.1, the DT algorithm only successfully detects water pixels with 

water fractions above 50% or so. To detect floodwater pixels with water fractions less than 50%, 
change detection is used as the main approach around the confirmed water pixels and existing rivers, 
lakes, and reservoirs in the ancillary water reference map. The method determines a minor water pixel 

landchR _
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by either comparing water signals before and after flooding, or comparing water signals with 
surrounding confirmed clear-sky land pixels that have similar land cover types to the minor water 
pixel. To reduce the dependence on historic data, the VFM chooses to compare the spectral variables 
𝑅$%&. 𝑅'(!, 𝑅)*(!, NDSI and 𝑇2;f of a minor water pixel with those from the surrounding clear-sky 
land. 

For a confirmed water pixel, average reflectance in Vis, NIR and SWIR channels are calculated in 
the neighboring 50×50 window on vegetation (𝑅KgL_K`̀ `̀ `̀ `̀ , 𝑅MNO_K`̀ `̀ `̀ `̀ , 𝑅PQNO_K`̀ `̀ `̀ `̀ `̀ , 𝑁𝐷𝑆𝐼K`̀ `̀ `̀ `̀ `) and bare land 
(𝑅KgL_h`̀ `̀ `̀ `̀ , 𝑅MNO_h`̀ `̀ `̀ `̀ , 𝑅PQNO_h`̀ `̀ `̀ `̀ `̀ , 𝑁𝐷𝑆𝐼h`̀ `̀ `̀ `̀ `) with the same land cover types, respectively. The variable difference 
between the minor water pixel and the surrounding land pixels are referred as 𝐷𝑅KBL,	𝐷𝑅MNO,	𝐷𝑅PQNO, 
and	𝐷𝑁𝐷𝑆𝐼, respectively. All the land pixels around a confirmed water pixel, which are within 30m 
elevation difference to the confirmed water pixel, are applied in reflectance comparison to the 
background. For a vegetation pixel, if it meets condition (2-41), then it is determined as a minor water 
pixel, and for a bare land pixel, if it meets condition (2-42), then it is determined as a minor water 
pixel. 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑅'(! ≤ 35%
𝑅)*(! ≤ 20%
𝑁𝐷𝑆𝐼 ≥ 𝑁𝐷𝑆𝐼K`̀ `̀ `̀ `̀ `

𝐷𝑅MNO 	≤ 𝐷𝑅MNO_ae
𝐷𝑅PQNO ≥ 𝐷𝑅PQNO_ae
𝐷𝑁𝐷𝑆𝐼 > 𝐷𝑁𝐷𝑆𝐼ae
𝐷𝑅KBL ≥ 𝐷𝑅KBL_ae

                                                   (2-41) 

 

⎩
⎪⎪
⎪
⎨

⎪
⎪⎪
⎧

𝑅$%& < 25%
𝑅'(! < 25%
𝑅)*(! < 25%
𝑁𝐷𝑆𝐼 ≥ 𝑁𝐷𝑆𝐼h`̀ `̀ `̀ `̀ `

𝐷𝑅MNO 	≤ 𝐷𝑅MNO_ae
𝐷𝑅PQNO ≥ 𝐷𝑅PQNO_ae
𝐷𝑁𝐷𝑆𝐼 > 𝐷𝑁𝐷𝑆𝐼ae
𝑅KBL ≥ 𝑅KgL_K`̀ `̀ `̀ `̀

                                                   (2-42) 

In conditions (2-41) and (2-42), 𝐷𝑅KBL_ae, 𝐷𝑅MNO_ae, 𝐷𝑅PQNO_ae and 𝐷𝑁𝐷𝑆𝐼ae are thresholds that 
defined in vegetation and bare land with different land cover types. For vegetation pixels over forest, 
𝐷𝑅MNO_ae, 𝐷𝑅PQNO_ae and 𝐷𝑁𝐷𝑆𝐼ae are set as -8%, -5% and -0.35, in urban land, they are set as -12%, 
-11% and -0.1, and in other land cover types, they are set -9%, -6% and -0.3. For bare land pixels over 
desert, 𝐷𝑅KBL_ae, 𝐷𝑅MNO_ae, 𝐷𝑅PQNO_ae and 𝐷𝑁𝐷𝑆𝐼ae are set as -8%, -12%, -15% and -0.3, in urban 
land, they are set as -7%, -10%, -11% and -0.15, in grassland and open shrub land, they are set as 
-6.5%, -10%, -11% and -0.25, in cropland and close shrub land, they are set as -6%, -9%, -10% and 
-0.2, and in other land cover types, they are set -6%, -9%, -10.5% and -0.25.  

The change detection successfully detects many water pixels with water fractions less than 50% in 
the VIIRS flood maps, although it fails to pick up water pixel with water fractions below 20% or so. 
Some cloud shadows and terrain shadows are also counted in. Therefore, the detected minor water 
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pixels are required removing cloud shadows and terrain shadows using the methods described in 
sections 2.3.2.2 and 2.3.2.3, as well as water fraction retrieval described in section 2.3.2.4. 

2.3.2.6 Flood water determination 
The supra-snow/ice water is kept as an independent type in the VIIRS flood maps to differentiate 

from supra-veg/bare land water. Therefore, only the retrieved supra-veg/bare soil water fractions are 
compared against the water reference map. The water reference map used in VFM is a combination of 
the 2015’s MODIS 250-m global water mask, the water layer in the 30-m National Land Cover 
Dataset (in the USA) and the global 150-m water mask from ESA’s Climate Change Initiative (CCI). 
The MODIS 250-m global water mask is resampled to 375-m water/no water mask, and the 30-m 
National Land Cover Dataset in the CONUS and the 150-m CCI water mask are resampled to 375-m 
water mask by calculating water fractions at 375-m grids. For a detected water pixel from the VIIRS 
imagery, if it is in the water reference map with less than 1% water fraction or shown as no water (it is 
a land pixel in the water reference map), then the pixel is determined as floodwater directly and 
represented with the retrieved water fraction. If in the water reference map it is with water fraction 
larger than 1% or shown as water, then the pixel is only determined as floodwater when the retrieved 
water fraction is at least 40% larger than that in the water reference map. Otherwise, it is determined as 
a normal water pixel. Therefore, in VIIRS flood maps, supra-veg/bare soil floodwater pixels are 
represented in fractions from 1% to 100%, which provides end users with more detail on flood extent. 

 

2.3.2.7 Maximal water fraction composition 
With the near real-time (NRT) VIIRS flood maps, a maximal water-fraction composition process 

can help filter out cloud cover to derive the maximal flood event during a period. In a composited 
flood map, a pixel is assigned as a flooding pixel as long as it is detected as a flooding pixel in any 
NRT flood maps during that period, and the maximal floodwater fraction among all the NRT flood 
maps is used as its composited water fraction. The VFM also composites snow/ice cover and clear-sky 
land to derive the maximal snow/ice cover and clear-sky land in the final composited flood maps. If a 
pixel is not detected as flood but is detected as snow/ice cover in any NRT flood maps, then it is 
assigned as a snow ice pixel. Otherwise, if it is not detected as floodwater or snow/ice cover, but is 
detected as a dryland pixel in any NRT flood maps, then it is detected as a dryland pixel in the 
composited flood map. If it is detected as cloud cover in all the NRT flood maps, then it is assigned as 
a cloud pixel in the composited flood map. In this way, the composited flood map shows the maximal 
clear-sky coverage with the maximal floodwater fractions during a period. The routinely generated 
composited VIIRS flood maps include daily composition and 5-day composition from Suomi-NPP 
and NOAA-20. Fig. 2-16 demonstrates the flow chart of the composition process. 
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Fig. 2-16 Flow chart of the VFM composition process 

2.4 Algorithm Output  
The algorithm outputs include: 
• VIIRS NRT floodwater detection dataset in 89-S granules 
• Quality flag of the VIIRS NRT floodwater detection dataset 
• VIIRS NRT floodwater detection dataset in the eight NWS domains 
• Quality flag of the VIIRS NRT floodwater detection dataset in the eight NWS domains 
• VIIRS daily composited floodwater dataset 
• Quality flag of the VIIRS daily composited floodwater dataset 
• VIIRS 5-day composited floodwater dataset 
• Quality flag of the VIIRS 5-day composited floodwater dataset 
The VIIRS NRT floodwater detection dataset and its quality flag are with the same size of gridded 

VIIRS NRT granules, or in NWS 8 defined domains (Fig. 2-17). The daily and 5-day composites and 
the corresponding quality flags are in 136 defined areas of interest (AOI) covering global land between 
60°S and 75°N in latitudes (Fig. 2-18). The formats include netCDF, geotiff and shapefile. Ultimately, 
there are eight pixel types in the final VIIRS flood maps: cloud, snow cover, river/lake ice cover, 
shadows (including cloud shadows and terrain shadows), clear-sky land (including vegetation and 
bare soil), normal open water, supra-snow/ice water (including mixed water&ice and melting ice 
surface), and supra-veg/bare soil flooding water fractions. Table 2-4 lists the definition of the VIIRS 
output floodwater dataset, and the quality flags are shown in Table 2-5. Fig. 2-19, Fig. 2-20, and Fig. 
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2-21 present an example of VIIRS NRT flood maps in granule and in NWS domains, a daily 
composited flood map, and a 5-day composited flood map, respectively. 

 

Table 2-4 Definition of types of WaterDetection dataset in the output VFM netCDF file 

Value Definition 

1 Fill value: bad data, solar eclipse, data with solar zenith angles out of processing range 

15 Open water without water fraction retrieval 

16 Clear-sky bare land 

17 Clear-sky vegetation 

20 Snow cover 

27 River/lake ice cover 

30  Cloud cover 

38 Supra-snow/ice water, mixed ice&water, or ice in melting status 

50 Shadow: cloud shadow and terrain shadow 

100 Open normal water: river, lake, reservoir, ocean 

101~200 Water fractions of supra-vegetation bare land floodwater 

 

Table 2-5 Definition of QualityFlag dataset in the output VFM netCDF file 

Value Definition 

0 High-quality detection 

1 Moderate-quality detection 

2 Low-quality detection 

255 Fillvalue 
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Fig. 2-17 Sketch of NWS 8 domains 
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Fig. 2-18 Sketch of global 136 AOIs for VFM daily and 5-day composited products 
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Fig. 2-19 An example of VIIRS NRT flood map in 89-S granule 
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Fig. 2-20 An example of VIIRS global daily composited flood map in the 136 AOIs 

 
Fig. 2-21 An example of VIIRS global 5-day composited flood map in the 136 AOIs 
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2.5 Performance Estimates 

2.5.1 Test Data Description 
One VIIRS 89-S granule from NOAA-20 data is used as the test data to run the algorithm and 

software. The test datasets include VIIRS terrain-corrected navigation data (GITCO), VIIRS Imager 
band 01 (SVI01), band 02 (SVI02), band 03 (SVI03), band 05 (SVI05), and VIIRS enterprise cloud 
mask data ( JRR-CloudMask), which are listed as following: 

GITCO_j01_d20200225_t1909150_e1910395_b11768_c20200226160606186943_nobc_ops.h5 
SVI01_j01_d20200225_t1909150_e1910395_b11768_c20200226160556032790_nobc_ops.h5 
SVI02_j01_d20200225_t1909150_e1910395_b11768_c20200226160559483258_nobc_ops.h5 
SVI03_j01_d20200225_t1909150_e1910395_b11768_c20200226160600612879_nobc_ops.h5 
SVI05_j01_d20200225_t1909150_e1910395_b11768_c20200226160534051648_nobc_ops.h5 
JRR-CloudMask_v2r1_j01_s202002251909150_e202002251910395_c202002251935310.nc 
With the test data, VIIRS_Swath_Projection module output the gridded 89-S granules with the 

four Imager bands (SVI01, SVI02, SVI03 and SVI05), and solar zenith angle, solar azimuth angle, 
sensor zenith angle and sensor azimuth angle in 375-m spatial resolution, and the gridded 
JRR-CloudMask in 750-m spatial resolution: 

GITCO_Prj_SVI_j01_d20200225_t1909150_e1910395_b11768_cspp_dev_000.h5 
JRR-CloudMask_ j01_prj_s202002251909150_e202002251910395_000.h5 
The two gridded datasets are used for VIIRS flood detection, and the VIIRS NRT floodwater 

dataset and quality flag are generated in netCDF format: 
VIIRS-Flood_j01_s202002251909150_e202002251910395_c202003050039039.nc 
The output VIIRS NRT floodwater dataset is divided into 8 NWS domains or 136 AOIs for daily 

and 5-day composition. More detail will be provided in “System Maintenance Manual”. 

2.5.2 Sensor Effects 
Because the VFM uses VIIRS Imager band 01 (VIS), band02 (NIR) and band 03 (SWIR) to detect 

water and retrieve water fractions, sensor performance may affect the accuracy of water detection and 
fraction retrieval. Particularly, the SWIR channel is a key channel for water detection and fraction 
retrieval. The sensitivity of spectral response in this channel is quite important for the product quality. 
Although the VFM algorithm uses DT approach and change detection as the major approaches for 
water detection, which is tolerant with slight fluctuation in channel reflectance, the product quality is 
still affected by the stability of calibration. Because the VIIRS Imager bands are not atmospheric 
corrected, sensor observing geometry is another uncertainty to the detection and water fraction 
retrieval. Under large sensor zenith angles, due to atmosphere effect, less water pixels may be detected 
and water fractions may be underestimated due to larger reflectance than actual one. Although VIIRS 
granules are with relatively constant spatial resolution across the entire scan, on the edges of a scan, 
the spatial resolution is still not as good as nadir regions, and thus may decrease the quality as well. For 
NOAA-20, the stripes in the VIIRS I-band 03 (SWIR) may cause problems, although the stripes have 
been interpolated with the neighboring scans, the accuracy over these scans decreases accordingly.  
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2.5.3 Retrieval Errors 
The VFM algorithm includes water detection and water fraction retrieval. The water fraction 

retrieval accuracy are directly affected by water detection errors. Currently, there are several major 
errors from the water detection algorithm described below. 

Some cloud shadows cast by some thin clouds, which are detected as water, remain unremoved in 
the VIIRS flood maps due to the uncertainty of cloud detection and underestimation of cloud heights 
of these clouds. This is the major error source of the VFM products.  

Some terrain shadows over flat topography may not be removed with the object-based terrain 
removal algorithm based on surface roughness analysis. Although it is quite rare, it happens mostly in 
high latitudes during winter season under large solar zenith angles.  

The minor water detection algorithm detects water pixels with small water fractions using the 
information from the background dryland. Inevitably, some muddy or moist land after tides or floods 
may be falsely detected as water by the algorithm.  

Under sun-glint contamination, water detection accuracy decreases especially over water surface 
with moderate sun-glint contamination, comparing to water detection without sun-glint contamination.  
Because sun-glint is closely related to solar angles, this kind of error mainly occurs in mid to low 
latitudes during summer.  

The VFM algorithm detected some water with salt-like clay background. This type of water looks 
similar to snow/ice. In very rare situation, the algorithm may take some rainforest with some smoke as 
water because of the decreased reflectance in the SWIR channel.  

On the granule edges between two continuous granules, floodwater may not be applied in cloud 
shadow removal because the clouds that cast the shadows are located in the other granule. In this 
situation, the VFM algorithm takes these floodwater pixels as cloud shadows directly to reduce the 
false detection. However, some real floodwater may be mistakenly taken as shadows too, which 
increases the omission errors.  

The water reference map may not cover some new reservoirs or hydraulic projects. Therefore, 
these reservoirs may be falsely assigned as floodwater rather than normal water. The water reference 
map used by the VFM should be updated every year. 

All the above water detection errors are included in water fraction retrieval accordingly. Besides 
these error sources, water fraction retrieval can be affected by other factors such as sensor noises and 
measurement uncertainties. Some floodwater with some very thin cloud cover or smoke can still be 
detected in the VIIRS flood maps due to the strategy to detect as much water as possible used by VFM 
algorithm. However, the contamination from the cloud cover and smoke may result in underestimation 
of water fractions than actual ones.  

Anisotropy is the major error source for water fraction retrieval, resulting in underestimate of both 
water detection and water fraction retrieval on the scan edges. Although the DNNS method uses the 
nearest neighboring pixels to derive reflectance of pure land and pure water dynamically, the water 
fraction retrieval is still systematically affected by the anisotropy effect, which might contribute about 
10% variance to the retrieved water fractions. This part should be the major improvement on the VFM 
algorithm in future.  

Other factors such as sensor noises and measurement uncertainties can also affect water detection 
and water fraction retrieval. However, the VFM algorithm is designed with large tolerance to these 
uncertainties. These factors may only contribute limited variance (within 5%) to the water fractions.  
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2.6 Practical Considerations 

2.6.1 Numerical Computation Considerations 
The VFM algorithm is overall pixel-based, which does not require much computation 

considerations. However, the VFM algorithm includes six major processes, which takes a lot of 
computation. The object-based terrain shadow removal requires clustering the adjacent water pixels 
into a water object or polygon. In very rare situations, the recursion process may cause problems for 
very large water objects. Therefore, during the recursion process to search for water pixels, the 
recursion is terminated when the number of the searched pixels meets the pre-defined conditions. The 
change detection method is widely used in the VFM process such as snow/ice detection, 
supra-snow/ice water detection, and minor water detection. To save computation resource, the 
calculated variables from the nearest neighboring moving window centering at one pixel are applied to 
all the pixels nearby within half moving window size to the centering pixel. Although it might 
decrease the accuracy slightly, it helps save the computation resources substantially. 

2.6.2 Programming and Procedural Considerations 
The VFM includes NRT process, daily composition process and 5-day composition process. The 

NRT process includes granule process and NWS domain process, and the NWS domain process needs 
multiple granules to get a mosaicked file with a latency requirement about 40 minutes. However, in 
NDE environment, it is difficult to request the previous granules for the current granule process, which 
brings difficulty to determine whether a NWS domain is completed. When incorporating the codes in 
NDE environment, a NWS domain is determined to be completed when the VIIRS granules change 
between ascending and descending.  

2.6.3 Quality Assessment and Diagnostics 
Along with the flood detection results, quality flags are also output by the VFM products to record 

the quality of the detection and fraction retrieval. The quality flags are defined in the following types: 
• Low quality flag (2): If a pixel is detected as cloud, but in the VIIRS enterprise cloud mask, 

it is shown as clear-sky land, then this pixel is with low quality flag. If a pixel is detected as 
non-cloud, but in the VIIRS enterprise cloud mask, it is shown as cloud, then this pixel is with 
low quality flag. All the cloud shadow pixels on the granule edges with their clouds in other 
granules are with low quality flag.  

• Moderate quality flag (1): Pixels that are detected as vegetation, bare land or water with the 
DT algorithm, but are re-detected as a different type during the post analysis are with 
moderate quality flag. 

• Fill value (255): All the pixels with fill value from the detection results are with fill-value 
quality flag. 

• High quality flag (0): The rest pixels that are not with any of the above three quality flags are 
with high quality flags. 

The VFM fills the dataset with fill values in the following situations: 
• Bad data from SDR in any channel that is used by VFM: Those scans with fill value 

65533 are all taken as fill value in the VFM output. 
• Scans with solar eclipse: Scans with solar eclipse from the SDR record are with fill value. 
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• Data with solar zenith angles beyond the defined range: Pixels with solar zenith angle 
beyond the defined range are with fill value. The range of solar zenith angle (θ) is defined 
based on days of year (DOY): 
– If: 1≤DOY≤ 59, or 291 ≤DOY≤ 366, then in the north hemisphere, θ ≤85°, and in 

the south hemisphere,  θ ≤76° 
– If 60 ≤DOY≤ 99, or 251≤DOY≤ 290, then θ ≤80° globally. 
– If 100 ≤DOY≤ 250, then in the north hemisphere, θ ≤76°, and in the south hemisphere, 

θ ≤85° 
• Data with sensor zenith angles above 70°: Pixels with sensor zenith angles above 70° are 

with fill value. 
• Data with calibrated reflectance or brightness temperature out of valid range: Pixels 

with calibrated reflectance or brightness temperature out of valid range are with fill value.  
• Other abnormal data: Pixels with abnormal reflectance in either of the Vis, NIR and SWIR 

channels are with fill value. For example, pixels that meet either of these abnormal situation:  
R)*(! - R$%& ≥50%, or R)*(! - R'(!≥40%, or R$%& - R'(!≥40%, are with fill value. 

2.6.4 Exception Handling 
There are altogether 32 error types defined to handle processing exceptions such as memory 

check, file access status check, file name check, file I-O success check and so on. For each module, a 
log file is defined globally to record all the error types during the process. VFM does not output any 
results if a granule meets either of the following conditions: 

• It is a nighttime granule. 
• It is a granule near North Pole or South Pole. 
• It is a granule with valid data less than 20%. 
 

2.7 Validation 
The VFM algorithm and products have been validated through visual inspection, comparison with 

MODIS flood products and radar flood products, and quantitative validation with Landsat-8 OLI 
images. 

2.7.1 Visual inspection 
The VFM product has been evaluated offline with VIIRS imagery since 2015. Over 10,000 VIIRS 

granules have been tested and visually inspected with VIIRS false-color images composited with 
VIIRS Imager bands 3 (Red), 2 (Green) and 1 (Blue). These granules cover most of the global land 
areas between 80°S and 80°N year-round. Visual inspection consistently shows promising product 
performance. Fig. 2-22 depicts an example of visual inspection validation. Fig. 2-22(a) is a VIIRS 
false-color image on 19 May 2015 at 2135 UTC in north Alaska, and the corresponding VIIRS flood 
detection map is shown in Fig. 2-22 (b). In Fig. 2-22 (a), the cyan color indicated there were still snow 
cover in that area with some clouds (shown in light grey-white) and cloud shadows (darker grey). In 
the southeast part of the image, the topography causes some dark terrain shadows. During northern 
Alaska’s break-up and snow-melting season, ice jams and snowmelt on top of the snow/ice surface 
often causes flooding. The situation in Fig. 2-22 (a) is a complex scene, yet Fig. 2-22 (b) shows 
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realistic results from the VFM product. Clouds are masked in grey, snow cover is flagged in white, 
river/lake ice is detected in cyan, and shadows are removed and shown in dark grey. Water is divided 
into two types: supra-snow/ice water and supra-veg/bare land water. The Supra-snow/ice water in Fig. 
2-22 (b) shown in purple indicates either of the three situations: 1) water sitting on top of river/lake ice; 
2) Ice in semi-transparent status due to melting; 3) Mixed ice & water. Supra-veg/bare soil floodwater 
are represented in water fractions (from light green to red), and the rest clear-sky land including 
vegetation and bare soil is shown in brown. Overall, the product performs well under complex weather 
and ground conditions. 

 
Fig. 2-22 (a) SNPP/VIIRS false-color composite image in north Alaska on 19 May2015 2135 UTC; 
(b) SNPP/VIIRS flood detection map in north Alaska on 19 May2015 2135 UTC 

2.7.2 Comparison with MODIS flood products 
MODIS experimental flood products were publicly released in 2011 by NASA based on 

Dartmouth’s flood detection algorithms and are available in 2-day, 3-day and 14-day composite flood 
maps at the website http://oas.gsfc.nasa.gov/floodmap. During some flood events, daily near real-time 
(1-day) flood maps are also available in this website. To remove cloud shadows and terrain shadows, a 
composition process is applied based on multiple-day flood maps. This process sometimes 
misclassifies floodwater as shadows and under-reports floodwater in MODIS 2-day and 3-day 
composite flood maps. The VFM algorithm removes cloud shadows and terrain shadows on each 
overpass and therefore is able to produce near real-time flood maps with less shadow bias. Fig. 2-23 
presents an example showing the difference between the two flood products during California’s flood 
in January 2017. Fig. 2-23 (a) is MODIS false-color composite image on 11 Jan. 2017 at 1910 UTC 
downloaded from the MODIS Today website (http://ge.ssec.wisc.edu/modis-today), Fig. 2-23 (b) is a 
MODIS flood map using 1-day, 2-day and 3-day composited floodwater shapefiles downloaded from 
the website http://oas.gsfc.nasa.gov/floodmap. In Fig. 2-23 (b), blue is floodwater in MODIS 3-day 
composited floodwater layer from 09-11 Jan. 2017, green and blue represent floodwater in MODIS 
2-day composited floodwater layer from 10-11 Jan. 2017, and red, green and blue show MODIS 1-day 
near real-time floodwater on 11 Jan. 2017 at 1910 UTC. Suomi-NPP/VIIRS false-color composite 
image and the corresponding automatic flood detection map on 11 Jan. 2017 at 2116 UTC produced 
by VFM algorithm are shown in Fig. 2-23(c) and (d), respectively. In the MODIS false-color image 
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(Fig. 2-23 (a)), floodwaters are visible as dark blue. These floodwaters are successfully identified in 
the MODIS 1-day floodwater layer (red, green and blue in Fig. 2-23 (b)). However, many cloud 
shadows and terrain shadows are misclassified as floodwaters. The composition process results in 
fewer cloud shadows in the 2-day composite floodwater layer (green and blue in Fig. 2-23 (b)), but 
much of the valid floodwater identified in the 1-day floodwater layer is removed. Further, the 3-day 
composite floodwater layer (blue in Fig. 2-23 (b)) has almost no shadows, but almost all of the 
floodwater is removed as well. Weather conditions changed slightly between the 1910 UTC 
Terra-MODIS overpass and the 2116 UTC SNPP-VIIRS overpass, and the change of cloud cover 
results in some different areas where floodwater is obscured by clouds. Despite the complex 
conditions depicted in the VIIRS false-color composite image Fig. 2-23(c), the VFM results (Fig. 
2-23(d)) are still highly consistent with the false-color composite image. Overall, floodwater detected 
in VIIRS flood map corresponds well with the flooding apparent in the imagery as well as the 1-day 
MODIS floodwater layer. Cloud shadows and terrain shadows (dark grey in Fig. 2-23 (d)) have been 
separated from floodwater in the VFM flood product much better than in the MODIS flood product. 

Two days later, on 13 Jan. 2017, clear skies offered a good view of the flooding in California. 
Because there were clear skies on 11 Jan. and 13 Jan. 2017, but partially cloudy skies on 12 Jan. 2017, 
MODIS 2-day composite floodwater layer from 12-13 Jan. (green and blue in Fig. 2-24(a)) show 
similar floodwaters to that in the 3-day (from 11 Jan. to 13 Jan.) composite floodwater layer (blue in 
Fig. 2-24(a)). However, around the mountains especially in the south region, some terrain shadows 
erroneously appear as floodwaters in MODIS 2-day composite floodwater layer. With further 
composition process, most terrain shadows in the 2-day composite floodwater layer disappeared in the 
MODIS 3-day composite floodwater layer. Comparing with MODIS flood products, similar 
floodwater distribution was depicted, but terrain shadows along the mountains are accurately 
identified in VFM flood map (Fig. 2-24 (b)). 

To quantitatively analyze the difference between the two flood products, MODIS floodwater 
datasets in California on Jan. 11 and Jan. 13, 2017 are resampled to 375-m spatial resolution to 
compare with VIIRS flood datasets in a pixel-to-pixel way. It was completely clear-sky in California 
flooding regions on Jan. 13, 2017, and flood situation remained similar to Jan. 11. By visual inspection 
between VIIRS flood detection result and VIIRS false-color image on that day, VIIRS floodwater 
detection rate reached above 95%. Therefore, VIIRS floodwater dataset on Jan. 13 is used as a 
reference map to indicate the actual floodwater extent in moderate-resolution satellite imagery. The 
total number of floodwater pixels (𝑁aia_^) is calculated from MODIS near real-time (1-day), 2-day 
composited, 3-day composited floodwater datasets and VIIRS near real-time floodwater datasets. If a 
floodwater pixel is also shown in the reference map, then it is taken as a true floodwater pixel, and 𝑁a 
represents the total number of rue floodwater pixels. If a flood pixel in the reference map shown as 
clear-sky land in MODIS or VIIRS flood maps, then it is taken as an undetected floodwater pixel, and 
the total number of undetected floodwater pixels is 𝑁j. False detection ratio 𝑃k, detection accuracy 
rate𝑃a, and omission ratio (undetected ratio) 𝑃l are calculated in Equations (2-43), (2-44) and (2-45) 
respectively: 

𝑃k =
M?B?;:"M?
M?B?;:

× 100%                                                      (2-43) 

𝑃a =
M?

M?B?;:#MC
× 100%                                                       (2-44) 

𝑃l =
MC

M?#MC
× 100%                                                             (2-45) 
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Table 2-6 lists the results on the Jan. 2017’s California flood event from MODIS and VIIRS. From 
Table 2-6, MODIS flood map on Jan. 11, 2017 detected altogether 135797 flood pixels, but only 
33937 pixels are real floodwater pixels and 10247 flood pixels remained undetected. False detection 
ratio was about 75%. With 2-day composition process, only 22384 flood pixels were detected, of 
which 17594 pixels were real flood pixels. Comparing to MODIS near real-time flood map, false 
detection ratio with 2-day composition process decreased to 21.4%. However, undetected flood pixels 
reached 26590, resulting in 60.18% omission ratio. After 3-day composition process, only 1435 flood 
pixels were detected, of which 1285 pixels are real flood pixels. False detection ratio decreased to 
10.45%, but undetected flood pixels increased to 42899, and omission ratio reached 97.09%. With 
more clear-sky weather conditions on Jan. 13, MODIS showed better detection result. In MODIS 
2-day composite flood map, altogether 34387 flood pixels were detected, of which 26208 pixels were 
real flood pixels. About 15124 flood pixels were undetected. False detection ratio and omission ratio 
were 23.79% and 36.59% respectively. With 3-day composition process, MODIS results showed 
29572 detected flood pixels, 25844 real flood pixels and 15488 undetected flood pixels. False 
detection ratio and omission ratio were 12.61% and 37.47% respectively. VIIRS near real-time flood 
map on Jan. 11, 2017 detected 25258 flood pixels, of which 25077 pixels were real flood pixels. About 
6762 flood pixels were not detected, which were mainly caused by the uncertainty of cloud detection. 
False detection ratio was only 0.72% and omission ratio reached 21.24%. Comparing to MODIS flood 
products, the detection accuracy is much better in both complex weather conditions with cloud cover 
and clear-sky conditions. The improved performance especially on cloud shadow and terrain shadow 
removal guarantees the near real-time flood detection capability of VFM algorithm and the quality of 
VFM products. 
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Fig. 2-23 (a) MODIS false-color composite image on 11 Jan. 2017 at 1910 UTC; (b) MODIS near 
real-time, 2-day and 3-day composited flood map in California, USA on 11 Jan. 2017; (c)SNPP/VIIRS 
false-color composite image on 11 Jan. 2017 at 2116 UTC; (d) SNPP/VIIRS near real-time flood map 
produced by VNG Flood V1.0 on 11 Jan. 2017 at 2116 UTC 
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Fig. 2-24 (a) MODIS 2-day and 3-day composited flood map in California, USA on 13 Jan. 2017; (b) 
SNPP/VIIRS flood map produced by VNG Flood V1.0 on 13 Jan. at 2038 UTC 
 

Table 2-6 Comparison between MODIS flood product and VIIRS flood product 
 Dates Composition Ntotal Nt Nu Pf (%) Pt (%) PO (%) 

MODIS 
Jan. 11 

near real-time 135797 33937 10247 75.01 23.24 23.19 
2-day composite 22384 17594 26590 21.40 35.93 60.18 
3-day composite 1435 1285 42899 10.45 2.90 97.09 

Jan. 13 2-day composite 34387 26208 15124 23.79 52.93 36.59 
3-day composite 29572 25844 15488 12.61 57.35 37.47 

VIIRS Jan. 11 near real-time 25258 25077 6762 0.72 78.32 21.24 
Jan. 13 near real-time 42499 42499 ̶ ̶ ̶ ̶ 

 

2.7.3 Comparison with radar flood products 
Radar imagery is very popular in flood mapping because it can penetrate cloud cover. Radar flood 

products are good reference for evaluating flood products from other satellite imagery. The radar flood 
products from Sentinel-1 and Radarsat have been used to evaluate with VFM products during many 
major flood events such as the 2017’s hurricane Harvey flood, the 2019’s hurricane Florence flood, the 
2019’s Midwest flood, and floods in Somalia, south Asia and so on. The radar flood maps are mainly 
from the website of WMO’s International Charter (https://disasterscharter.org). Overall, the radar 
flood products have much higher spatial resolution than the VIIRS flood products. For floods caused 
by intensive rainfall, the radar flood products can present flood extent under cloud cover, whereas the 
VFM products fail to detect. Overall, under clear-sky coverage, the VIIRS flood maps show consistent 
results to the radar flood products. However, over land types with vegetation cover, the radar flood 
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products detect less flood extent than the VIIRS flood products, and over wet barren lands, radar flood 
products may detect more false floodwater than the VIIRS flood products. Fig. 2-25 presents an 
example in the West Gulf region of USA during the 2017’s hurricane Harvey. Fig. 2-25 (A) is a 
Sentinel-1 flood map on Aug. 31, 2017 downloaded from International Charter’s website, and Fig. 
2-25 (B) is a VIIRS flood map on the same day in the same region. The two flood maps show similar 
flood extent in most regions, but overall the VIIRS results show larger flood extent, especially over 
regions with vegetation cover. Fig. 2-25 (C) is a subset of Fig. 2-25 (A) and Fig. 2-25 (E) is a subset of 
Fig. 2-25 (B). Fig. 2-25 (D) is an aerial photo taken on Sep. 02, 2017 in the subset region of Fig. 2-25 
(C) and (E). From Fig. 2-25 (D), this region was mostly inundated and most floodwater was veiled by 
vegetation cover. The Sentinel-1 flood map (Fig. 2-25 (C)) only showed very small flood extent, and 
failed to detect most floodwater partially veiled by vegetation cover. In comparison, although the 
VIIRS flood map missed some floodwater that were completely veiled by vegetation cover and 
underestimated the floodwater fractions due to the impact from vegetation cover, it successfully 
detected most of the floodwater, which might reflect more robust detection capability of VIIRS 
imagery over vegetation cover than radar imagery. 

Fig. 2-26 shows a comparison example between Radarsat flood map and VIIRS flood map in 
Somalia during the May 2018’s flood. Fig. 2-26 (a) is a Radarsat flood map on May 09, 2018 in 
Somolia downloaded from Charter’s website. Fig. 2-26 (b) is a natural color image from Sentinel-2B 
on May 08, 2018, Fig. 2-26 (c) is a VIIRS flood map on May 07, 2018 and Fig. 2-26 (d) is the VIIRS 
natural color image on May 07, 2018 in the same region of Fig. 2-26 (a). From Fig. 2-26 (a), it showed 
large flood extent in Somalia. However, in the corresponding VIIRS flood map (Fig. 2-26 (c)) no 
significant floodwater was detected. By comparing with the VIIRS’s natural color image (Fig. 2-26 
(d)), no significant floodwater could be found in this region. A Sentinel-2B natural color image on 
May 08, 2018 (Fig. 2-26 (b)) was obtained for further comparison, in which no significant floodwater 
was found in the region too. By analyzing the Radarsat flood map with Sentinel-2B image, it is found 
that the falsely detected floodwater was mostly over barren land. Due to the rainfall during previous 
days, these barren soils were wet and thus looked darker than those dryland, but they were not in 
flooding at all. The comparison proves that VIIRS flood maps show steady and robust detection over 
these special situations, which may be used as a good supplement resource for flood mapping. 



NOAA  
  VIIRS Flood Mapping (VFM) Algorithm Theoretical Basis Document  

 
 

 

 
Fig. 2-25 Flood maps from Sentinel-1 and VIIRS in the West Gulf region during 2017’s hurricane 
Harvey (A) Sentinel-1 flood map on Aug. 31, 2017; (B) SNPP/VIIRS flood map produced by VNG 
Flood V1.0 on Aug. 31, 2017; (C) A subset of (A); (D) Aerial photo taken on Sep. 02, 2017 in the 
subset region of (C); (E) A subset of (B) 
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Fig. 2-26 Flood maps and images from Radarsat, Sentinel-2B and Suomi-NPP/VIIRS in Somalia 
during the May 2018’s flood (A) Radarsat flood map on May 09, 2018; (B) Sentinel-2B natural color 
image on May 08, 2018; (C) SNPP/VIIRS flood map produced by VNG Flood V1.0 on May 07, 2018; 
(D) SNPP/VIIRS natural color image on May 08, 2018 
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2.7.4 Validation against Landsat-8 OLI imagery 
Landsat-8 OLI imagery is a good data source to validate VIIRS flood product. The validation is 

done in two ways: 1) overlapping VIIRS flood products on Landsat-8 OLI images at 30-m resolution; 
2) degrading Landsat-8 OLI images to 375-m resolution for comparison with VIIRS. The first way can 
be done via SSEC’s Real Earth (http://realearth.ssec.wisc.edu/) visualization tool. Here, the near 
real-time availability of both VIIRS flood products and Landsat-8 OLI images in the web browser 
interface make it easy to overlap products and imagery. The Landsat-8 OLI images have been utilized 
for validation since 2015 globally, and the validation results are quite promising. Fig. 2-27 presents an 
example in Texas on 06 June 2016. Fig. 2-27(a) is a Landsat-8 OLI image from 1650 UTC where dark 
blue areas are floodwater. The VIIRS flood map from 1943 UTC is a semi-transparent overlay on top 
of the OLI image in Fig. 2-27(b). From Fig. 2-27, although cloud conditions are slightly different 
between the two observations, over clear-sky regions, VIIRS flood detection results were consistent 
with the high-resolution Landsat-8 OLI imagery. Most floodwater was accurately detected in the 
VIIRS flood map with larger water fractions (more red) in VIIRS flood map corresponding with more 
flooding water (more dark blue) in Landsat-8 image. This type of performance is typical in the other 
Landsat/SNPP validation comparisons. 

 
Fig. 2-27 (a) Landsat-8 OLI false-color composite image in Texas, USA on 06 June 2016 at 1650 
UTC; (b) VIIRS flood detection map on 06 June 2016 at 1943 UTC overlaid on top of the OLI image 
from Fig. 2-27(a) 
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To provide quantitative validation, Landsat images are remapped to 375-m resolution for 
comparison with VIIRS flood maps. The comparisons are limited due to different image modelling, 
calibration, geolocation accuracy for satellite images at different spatial resolution, viewing geometry, 
and overpass times (Schroeder et al., 2008; Li. et al., 2012). More than 10 Landsat 30-m images were 
remapped to spatially match with VIIRS flood detection results. Cases were selected to include 
supra-veg/bare soil floods and supra-snow/ice floods. In Landsat images, water was extracted 
interactively to generate 30-m water masks, and then water fractions were calculated at 375-m grids to 
compare against VIIRS water fraction maps. Fig. 2-28 presents three pairs of flood maps between 
375-m remapped Landsat flood maps and VIIRS flood maps. Fig. 2-28(a) is a resampled Landsat-7 
ETM 375-m water fraction map on 13 Jan. 2013 in Sacramento Valley of California, USA and its 
correspondent SNPP/VIIRS flood map is shown in Fig. 2-28(b). Fig. 2-28(c) and Fig. 2-28(d) are 
another pair of flood maps from Landsat-7 ETM (Fig. 2-28(c)) and Suomi-NPP/VIIRS (Fig. 2-28(d)) 
on 13 Jan. 2017 in California. Fig. 2-28(e) presents a 375-m water fraction map from Landsat-8 OLI 
on 01 April 2015 along the Sag River in northern Alaska, USA, and the same day’s SNPP/VIIRS flood 
map in the same region is shown in Fig. 2-28(f). From Fig. 2-28, VIIRS flood maps show similar 
floodwater distribution with Landsat flood maps, especially in regions with large water fractions. 
However, there are more small-water-fraction floodwater locations in the Landsat flood maps than in 
the VIIRS flood maps. This is reasonable because the signals from land are much stronger than from 
water when water fraction is small. Mixed water pixels in VIIRS imagery contain a smaller signal than 
in Landsat imagery due to the imager resolution and therefore it is expected that VIIRS – or any 
imager with similar spatial resolution - would have difficultly detecting mixed water pixels with low 
water fractions. Another issue is that for pixels with neighboring water pixels in large water fractions, 
the water fraction retrieval of these pixels shows larger results than Landsat. This difference may be 
caused by the difference between VIIRS and Landsat in image modelling, geolocation accuracy and 
viewing geometry.  
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Fig. 2-28 Three pairs of flood maps for comparison between SNPP/VIIRS and Landsat imagery: (a) 

Landsat-7 ETM on 13 Jan. 2017 in California, USA, (b) the correspondent SNPP/VIIRS flood map of 
(a); (c) Landsat-7 ETM on 13 Jan. 2017 in California, USA, (d) the correspondent SNPP/VIIRS flood 

map of (c); (e) Landsat-8 OLI on 01 April 2015 along the Sag River in Alaska, USA, (f) the 
correspondent SNPP/VIIRS flood map of (e) 

For further validation, |D_WF|, which is defined as the absolute water fraction difference between 
Landsat and VIIRS, is calculated and statistics of percentages of |D_WF| with different ranges are 
applied to reflect detection and retrieval accuracy. For supra-veg/bare soil floodwater, percentages are 
calculated in three types: 1) |D_WF| < 100%; 2) |D_WF| < 30%; 3) |D_WF| < 20%. The first type 
actually ignores water fraction difference between Landsat and VIIRS and thus reflects water 
detection accuracy, and the rest two types indicate water-fraction retrieval accuracy. For 
supra-snow/ice water without water fraction retrieval, only the first type is calculated to derive the 
general detection accuracy. About 50,000 valid samples were collected on supra-veg/bare soil 
floodwaters and 10,000 samples for supra-snow/ice water from about 10 Landsat images and VIIRS 
flood maps. Fig. 2-29 presents the validation results of supra-veg/bare soil water detection, and the 
results of supra-snow/ice water detection is shown in Fig. 2-30.  From Fig. 2-29 and Fig. 2-30, water 
detection and fraction retrieval accuracy increase with water fractions, which is consistent to the 
results shown in Fig. 2-28 with better consistency over larger water fractions. For supra-veg/bare soil 
water, with water fractions larger than 80%, the detection accuracy is about 95%, water-fraction 
retrieval accuracy with |D_WF| less than 30% is above 90%, and water-fraction retrieval accuracy 
with |D_WF| less than 20% is above 80%. When water fractions are below 40%, water detection 
accuracy is much higher than water-fraction retrieval accuracy, which somehow reflects there are 
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more uncertainties in the DNNS method in water fraction retrieval over pixels with small water 
fractions. Detection percentage of supra-snow/ice water reaches about 80% when water fractions are 
above 80%, and increases more linearly with water fractions than supra-veg/bare soil water detection. 
Overall, percentages of supra-snow/ice water detection are about 20% less than supra-veg/bare soil 
water detection. This might be related to the higher reflectance of snow/ice surface than vegetation and 
bare soils in visible to near infrared channels. The stronger signals of snow/ice surface may bring 
about larger uncertainties on water detection. 

 
Fig. 2-29 Scatter plot of supra-veg/bare soil water detection percentage of VIIRS over water fractions 
from Landsat imagery 
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Fig. 2-30 Scatter plot of supra-snow/ice water detection percentage of VIIRS over water fractions 
from Landsat imagery 
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3 ASSUMPTIONS AND LIMITATIONS  

The VFM product is a daytime-only product and the algorithm is developed based on the 
following assumptions: 

• The reflectance of water surface without sun-glint contamination in the SWIR channel is close 
to 0 and varies little with suspending matter in comparison to the Vis and NIR channels, which 
allows this channel to be a key channel for water detection and water fraction retrieval. 
• In neighboring regions, reflectance variance caused by anisotropy effect is similar in the Vis, 
NIR and SWIR channels. 
• Ignoring cloud thickness, one cloud pixel at most cast one cloud shadow pixel in the VIIRS 
375-m imagery, which is used as the base to construct one-to-one relationship between cloud and 
cloud shadow. 
• Floodwater generally accumulates in low-lying topography with small surface roughness, and 
terrain shadow mainly forms in mountainous region with large surface roughness, which is used 
as the base for terrain shadow removal. 
These assumptions lay the foundation of the VFM algorithm. However, there are some exceptions 

for these assumptions. Although the SWIR channel is quite effective in water detection, it is with low 
reflectance over snow/ice surface as well. Thus, it is not utilized for supra-snow/ice water detection. 
The channel also brings confusion to the water detection over situations such as vegetation with some 
thin smoke, urban land with aerosol or thin snow cover, burnt scars with thin snow cover.  

Anisotropy is not considered in the entire imagery, but the impacts on the Vis, NIR and SWIR 
channels are removed by using neighboring pixels for change detection and water fraction retrieval 
based on the assumption of similar anisotropy effect in neighboring regions. However, this can still 
cause problems in water detection and water fraction retrieval because of the reflectance variance in 
different regions. This might be the major issue of the current VFM algorithm. 

Although the cloud shadow removal algorithm is developed based on the one-to-one assumption 
between cloud and cloud shadow, the assumption may not be applicable in high latitudes especially in 
seasons with large solar zenith angles, when cloud thickness cannot be ignored. Therefore, some cloud 
shadows may not be removed in VIIRS flood maps. 

The surface roughness analysis is the base for terrain shadow removal. Nevertheless, some real 
water caused by melting water from glaciers may be taken as terrain shadows. This may happen quite 
common during summer time in high latitudes such as Alaska. Some terrain shadows can also be 
formed in flat topography in some regions with special topography conditions, and these shadows may 
not be removed from the VIIRS flood maps. 

3.1 Performance Assumptions 
It is assumed that only daytime VIIRS flood products are generated from Suomi-NPP and 

NOAA-20 over land regions between 80°S and 80°N in latitudes. Therefore, no VFM flood products 
are generated near North Pole and South Pole regions. Because the maximal solar zenith angle that 
VFM algorithm is applicable is set as 85°, in high latitudes during winter season, no VFM products are 
expected to be produced as well.  

VIIRS is an optical sensor, and thus the VFM algorithm can only be used to detect flood under 
clear-sky coverage, which may cause some latency on flood detection if cloud conditions exist. 
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Under solar eclipse, because of sharply decreased reflectance from earth surface, the VFM 
algorithm is not applicable, and the scans with solar eclipse are not processed. Therefore, no VFM 
product under solar eclipse is produced in this situation. 

For the same flood under the same cloud conditions, less water pixels with smaller water fractions 
are expected to derive in the granule edges than in nadir regions because of the anisotropy effect. Over 
floodwater with contamination from thin cloud and smoke, smaller water fractions are expected to 
derive in the VFM products.  

On the edges between two granules, all the detected water pixels with the cloud positions out of 
the granule range are expected to be flagged as cloud shadow pixels to reduce the commission error 
based on the one-to-one relationship between cloud and cloud shadow.  

Some terrain shadows especially along rivers may not be removed in the VIIRS flood maps 
because of small surface roughness of these shadows. This happens mostly in high latitudes. 

The VFM mainly depends on its own cloud and snow/ice detection, although VIIRS enterprise 
cloud mask is applied. The four channels (I-band 01, 02, 03 and 05) used in VFM algorithm show 
limitations in detecting thin clouds and discrimination between ice cloud and snow/ice cover. Thus, in 
the VFM product, some thin clouds may not be detected, which results in unremoved cloud shadows 
from these clouds. Some ice cloud may be confused with snow/ice cover as well. Because the daily 
and 5-day composition process uses the maximal-water fraction and maximal-snow/ice cover scheme 
to composite the NRT flood maps, these errors are inherited in the daily and 5-day composited flood 
maps accordingly.  

Overall, the VFM algorithm performs in a good balance among cloud, snow/ice, shadow and 
floodwater. It successfully detects most of moderate to major floodwater under clear-sky conditions, 
although it seems to make more mistakes in high latitudes especially in late fall season due to the 
complexity of ground and weather conditions. 
 

3.2 Potential Improvements 
With all the existing issues and errors in the current VFM algorithm, some potential 

improvements can be made to derive steadier results. The major potential improvements include 
anisotropy effect removal and implementing the cirrus channel (centering at 1.385µm) for better 
detection over thin cloud and ice cloud. 

Anisotropy effect removal is one of the major improvements that can be made in future for 
steadier water fraction retrieval across the scan and between VIIRS images from Suomi-NPP and 
NOAA-20. Algorithm can be developed to stabilize the reflectance in the Vis, NIR and SWIR 
channels based on the geometry angles. With the improvement, the accuracy of water fraction retrieval 
can be improved about 5% to 10%.  

Implementing the cirrus channel (VIIRS M-9) can help improve the detection accuracy on thin 
clouds and ice cloud. Currently, most residual cloud shadows in the VFM product are cast by 
unremoved thin cloud. With better detection from thin cloud, these errors can be fixed accordingly. 
Additionally, some floodwater with thin cloud contamination can be detected in the VFM product. 
Nevertheless, water fraction retrieval of this type of floodwater is affected resulting in under-estimated 
water fractions. The improvement of thin cloud detection can help discriminate this type of water, and 
corrections can be made accordingly on the water fraction retrieval. 
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Other potential improvement on the VFM product is to update the water reference map and land 
cover dataset. The water reference map should be updated with new reservoirs and hydraulic projects 
for less false floodwater alarm. The land cover dataset should be updated with land cover change from 
wild fires or new reservoirs. 

In the current VFM product, there is no difference between disastrous floodwater and floodwater 
caused by agriculture activities such as rice paddy planting, which may bring about confusion to 
decision-makers. In future, differentiating disastrous floodwater from the VFM product can be another 
potential improvement for better assistance to decision-makers on disaster management. 
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