Water Quality Validation
7-9 June 2022, University of Wisconsin-Madison

Workshop on the Validation of Satellite-derived Optical and
Water Quality Parameters for Coastal and Inland Waters

Field Measurements

Good (practically useful) data do not collect themselves. Neither do they magically appear on ones desk, ready
for analysis and lending insight into how to improve processes (S.B. Vardemann and J.M. Jobe 2016)

A measurement of any kind is incomplete unless accompanied with an estimate of the uncertainty associated with
that measurement. (J.M. Palmer and B.G. Grant 2009).

.. adequately sampled, carefully calibrated, quality controlled, and archived data for key elements of the climate
system will be useful indefinitely ( Wunsch, R.W. Schmitt, and D.J. Baker 2013)
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Water Quuality Validation
7-9 June 2022, University of Wisconsin-Madison

Workshop on the Validation of Satellite-derived Optical and Water Quality Parameters for
Coastal and Inland Waters

Validation and uncertainty assessment are crucial to the successful acceptance of satellite-derived data products. Only through confidence in parameter
uncertainty will there be increased uptake of these data products by the end-user community. This workshop will focus on the validation of water quality
products derived from satellite ocean color sensors within optically complex nearshore-coastal and inland waters with the goal of constructing a global
validation network. The workshop will summarize and evaluate the state of current validation assets globally, identify gaps in validation coverage and

begin to design a framework to construct a global validation network for these critical waters. Workshop objectives include:

* Review and evaluation of current and planned validation-related activities.
» |dentifying validation gaps in spatial coverage as well as water types.

* Review and evaluation of current in situ and laboratory optical measurements and data acquisition protocols including instrument characterization
and absolute radiometric calibration.

* Review and evaluation of satellite measurements in terms of representativeness for coastal and inland systems (e.q. pixel window, match up timing).
* Assessing current optical and water quality database resources including repository archive, preservation, stewardship, and access.
* Building global coordination through intemational partnerships for validation activities.

The workshop will cover a number of aspects related to validation including standardization of protocals, instrumentation needs, current validation

research and operational efforts, validation metrics, interoperability, and documenting and formatting validation data.
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Validation is the process of assessing, by
independent means, the quality of the data
products derived from the system outputs

Data Reception
and Processing
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L Field Measurements: topics and objectives
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 Priority optical, biogeochemical & ancillary quantities

* Instrumentation Considering current technology
and know-how, would it be possible
* Radiometry protocols to recommend (or enforce) best-

practices for in situ measurements
supporting the validation of
satellite derived data products for
inland and coastal waters?

e Calibration (implying traceability) & characterization
» Quality assurance & quality control

e Uncertainties



L3 Priority optical, biogeochemical & ancillary quantities

Field-Radiometric: Ly (A) or Ryq(A), which implies
determining/ measuring L (A), or alternatively L (L), or
L (z, 1), and additionally E(A), Ey(A)/E(R) ).

Field-IOPs: a().), b()) but also (L), S,,, T,

Field-Ancillary: Date, T(GMT), Lon, Lat, Altitude, Depth &
WS’ W ) ];)Pa) CC) Ta

Priority Quantities more related to water quality such as pigments,
particulate organic carbon, colored dissolved organic matter, ...)
will be addressed in the Session on Laboratory Measurements

E(), E((MVE ().

a(z,\), ¢ (z,A), by(z,)), S,(2), T,(z)




L3 Instruments & Protocols (restricted to radiometry)

Joint Research Centre

While keeping Ly\(M) or Rys(\) as target quantities to be determined, various in-water, above-water
and near-surface instruments and protocols are available

Near-surface - 5 Above-water (automated)

7§
H‘ ‘ ’J‘
& .\



& Radiometers
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Hyperspectral radiometers have a high number of narrow spectral bands typically less than 10 nm wide
distributed continuously through the spectrum. For these radiometers it is important to distinguish between the
spectral resolution determined by the band-width, and the spectral sampling interval determined by the distance
between center-wavelengths of adjacent bands (generally the spectral resolution is 2-3 times higher than the
spectral sampling interval).

Stray lights due to scattering and reflections in the optical system, and also polarization sensitivity due to
dispersive elements (i.e., diffraction grating or prism), must be determined.

Multi spectral radiometers measure the light field at a number of discrete spectral bands typically 10 nm wide.
The spectral responsivity of multispectral radiometers must be carefully characterized to identify possible
spectral regions of response away from the central band (out-of-band response).

Recommended specifications for hyperspectral radiometers applied for validation activities.

Optical Sensors
Spectral Range: 380 to 900 nm (an extension in the ultraviolet is desirable)
Spectral Resolution: 3-10 nm (FWHM)
Spectral Sampling: 1-3 nm (or at least 2 times the spectral resolution)
Wavelength Accuracy: 10 % FWHM resolution
Wavelength Stability: 5% FWHM of resolution
Signal-to-Noise Ratio: 1000:1 (at minimum)
Stray Light Rejection: 107° (of the maximum radiometric signal at each spectral band)
FOV Maximum (full-angle):  5°, 20° (for above-water and in-water, respectively)
Temperature Stability: Specified for 0-45°C
Linearity: Correctable to 0.1 %




£ Radiometry Protocols
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NASA Technical Memorandum 104566, Vol. 5

leve

. . . IOCCG Protocol Series
SeaWiFS Technical Report Series

Stanford B. Hooker and
Elaine R. Firestone, Editors
Ocean Optics & Biogeochemistry Protocols for
Satellite Ocean Colour Sensor Validation

Volume 5, Ocean Optics Protocols

for SeaWiFS Validation Volume 3: Protocols for Satellite Ocean Colour Data

Validation: In Situ Optical Radiometry (v3.0)

James L. Mueller and Roswell W. Austin

Authors
Giuseppe Zibordi, Kenneth |. Voss, B. Carol Johnson and James L. Mueller

International Ocean Colour Coordinating Group (IOCCG) in collaboration with
National A ics and Space Administration (NASA)

I0CCG, Dartmouth, Canada

December 2019

A protocol is a set of rules. Protocols leave room for personal decisions, contrary to methods
which enforce prescriptive rules commonly tied to classes of instruments.

Standardization implies the application of very prescriptive rules (often difficult to implement
across a community).



& In-Water Radiometry
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10CCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and
Mueller, J. L. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, I[OCCG, Dartmouth, NS, Canada.



3 Above-Water Radiometry
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Removal of sky-glint contribution

Ly (9,0,4) = Ly (9,0,4)~ p(@,0,0,,W)L,(¢,0', 1)

Correction for off-nadir view

Ly, (A) =L, (9,0,1)Cs,(4,0,0,0,,7,,IOP,IV)
13 mnsformatton to exact normallzed water-leaving radiance
Lyy(A) = L, (A)D*,(2)cos6,) ' C, ,(2,6,,7,,IOP)

10CCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and
Mueller, J. L. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, I[OCCG, Dartmouth, NS, Canada.
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The accuracy of any statistical modeling of p at
low sun zenith angles and high wind speed, is
decreased by: i. sky radiance contributions from
a variety of zenith and azimuth angles, and ii.
the time scale (tens milliseconds to seconds)
and spatial extent of L, measurements (varying
from a few up to Seveml hundreds of cm?,
depending on the field-of-view and height above
the water).

Most favorable measurement
conditions for above water
radiometry created by 6,> 20°
and W, < 5ms 1.

Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied optics, 38(36), 7442-7455.
Mobley, C. D. (2015). Polarized reflectance and transmittance properties of windblown sea surfaces. Applied optics, 54(15), 4828-4849
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G. Zibordi 2016. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry. Optics Express, 24(6), A446-A459.
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G. Zibordi 2016. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry. Optics Express, 24(6), A446-A459.
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[ | Superstructure perturbations (AAOT)
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M. Talone and G. Zibordi, 2019. Spectral assessment of deployment platform perturbations in above-water radiometry. Optics Express, 27(12), A878-A889.



H Single Depth Approach (SDA) & Sky-Blocked Approach (SBA)
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SDA data processing
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n,,(A)

SBA data processing
L) = Ly (2,4)-C (Ao 1, Ry, [)-C, (Aoa,by,2) - Cy, (K ,2)-C, (A)

Zibordi, G., & Talone, M. (2020). On the equivalence of near-surface methods to determine the water-leaving radiance. Optics Express, 28(3), 3200-3214.



= SBA v.s. SDA derived Ly,
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Zibordi, G., & Talone, M. (2020). On the equivalence of near-surface methods to determine the water-leaving radiance. Optics Express, 28(3), 3200-3214.
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Morel et al. (2002) look-up approach for Case-1 waters.
Input variables are: 0,¢,0,,A,W,Chla

RO, ) 0(0,4,0,,4,7,,Chla)  f(0,A,7,,Chla)

R i :R 6) )H 7/1
=R O A S o)™ 70y A, Chla)  0(0.00. ., Chia)

Morel, D. Antoine, B. Gentili, B. “Bidirectional reflectance of oceanic waters...,”
Applied Optics 41(30), 6289—6306 (2002).

Lee et al. (2011) semi-analytic approach for any water type.
Input variables are: 6,¢,0,,1,G,,G,

bbw (/1) bbw(/D
a(d) + by (/1)> a(d) + by (1)

bbp (/1) > bbp (/1)
a(d) + by(2) ) a(2) + by(2)

Rys(1,Q) = (GKV Q) + 6" (Q)

+ (Gg’ Q) + 6P (Q)

Z. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann,
“An IOP-centered approach to correct ...,” Appl. Opt. 50, 3155-3167 (2011).

BRDF corrections

C IOP-basecD

/ m(l) /
Eo(?v)

Compute

a(2) & by(A)

F 3

A 4
Compute

G(0,0,6,)

F 3

Lyn(4)

v

Output

Lwn (A)

G(0,0,0)

1OCCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and
Mueller, J. L. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, I[OCCG, Dartmouth, NS, Canada.
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Percent corrections from
the Chla- and IOP-based
approaches applied to
remove the off-nadir view
in above water
radiometric data.
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Talone, M., Zibordi, G. and Lee, Z., 2018. Correction for the non-nadir viewing geometry ... . Optics express, 26(10), pp.A541-A561.
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Above-Water

Advantages

1.

Long-term deployments are
insensitive to bio-fouling

2. Insensitive to coastal water optical
stratifications

3. Relatively fast deployment time
during short-term activities

Drawbacks

1.  Highly sensitive to wave
perturbations

2.  Restricted to a few radiometric

quantities (i.e., L )

In-Water

Advantages

1. Open to several radiometric
quantities (i.e., L, E, E)

2.  Produces comprehensive (fixed
depths or continuous) profiles of
AOPs

3. Upward radiometric quantities are
only slightly affected by wave
focusing

Drawbacks

1.  Sensitive to coastal water optical
stratifications

2. Long-term deployments can be very
sensitive to bio-fouling

3. Relatively slow deployment time

during short-term activities

Above-water, In-Water & Near-Surface: pros & cons

Near-Surface

Advantages

1. Insensitive to coastal water optical
stratifications

2.  Relatively fast deployment time during
short-term activities

Drawbacks
1.  Sensitive to wave perturbations

2. Long-term deployments can be
challenged by bio-fouling and/or
deployment platforms



Joi

3 Calibration (implying traceability) and Characterization
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Calibration is the comparison of the output from an
instrument with that of a calibration standard with
known accuracy. This process leads to establish a
relationship allowing to obtain measurements with
defined units and uncertainties from the output of an
instrument.

Characterization is the determination of the distinctive
features of an instrument (e.g., temperature response).

£[%]

Baffles

Standard lamp
(FEL 10007)

@ e S

Eo(%)

10

-10

Wavelength [nm]

Temperature [°C]




= SI Traceability and Primary Standards
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Traceability Pyramid
Metrological traceability implies a common
origin of reference (for instance international
reference systems) ensuring that measurements
are comparable regardless of instrument, time,

location and operator. A

In the case of optical radiometers, traceability -

is provided by their calibration through a _
radiance and irradiance secondary source

(commonly based on a 1000 W quartz-halogen _
FEL lamp with tungsten coiled filament,

calibrated with respect to the freezing
temperature of gold).




(1] Calibration Equation
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The conversion from relative to physical units of the radiometric quantity 3(4) (either E£(1) or
L(4)) at wavelength A is performed through

3(1) = C5(4) I () R(4) DN(3(4))

where DN(J(A)) indicates the digital output corrected for the dark value, C~(4) is the mn—air
absolute calibration coefficient (i.e., the absolute responsivity), /, (1) 1s the immersion factor
accounting for the change in responsivity of the sensor when immersed in water with respect
to air, and N(1) corrects for any deviation from the ideal performance of the measuring
system.

In the case of an ideal radiometer X(A)=1, but in general

N(AD)= K;(1(4) N;G(4) ... Ny k(1))

where N;(i(4)), N;((4)), ..., and X, (k(4)) are correction terms for different factors affecting the
performance of the considered radiometer (e.g., non-linearity, temperature response,
polarization sensitivity, stray-light perturbations, spectral response, geometrical response, ...).
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of absolute reference values.

Inter-calibrations among
laboratories are essential to
identify issues in calibration
set-ups, sources, or even

400 500 600 700 800 gon protocols implementation.

Wavelength, nm

Best inter-calibration exercises exhibit values within 1% for irradiance and 2% for radiance (k=1).

Johnson, B. C., Zibordi, G., Brown, S. W., Feinholz, M. E., Sorokin, M. G., Slutsker, 1., ... & Yoon, H. W. (2021). Characterization and absolute calibration of an AERONET-OC
radiometer. Applied Optics, 60(12), 3380-3392.
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The cosine response of irradiance sensors
should be characterized for each unit because
simple geometric differences of the collector
may lead to appreciable differences.
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S. Mekaoui and G. Zibordi. Cosine error for a class of hyperspectral irradiance sensors, Metrologia 50 (2013).



73 | On Calibration and Characterization Requirements
| Regular | Occasional | ___Initial | Class-based |

Radiometric responsivity X
Spectral response X
Out-of-band & stray-light X
Immersion factor
(irradiance)
Immersion factor
(radiance)
Angular response X

Joint Research Centre

>

Linearity
Integration time
Temperature response
Polarization sensitivity
Dark signal X
Temporal response X
Pressure effects X

X X X X

Very unlikely individual research teams may ensure comprehensive instrument characterizations.
Because of this, occasional, initial and class-based characterizations should be taken over by
major measurement programs in agreement with manufacturers and reference laboratories. This
would imply a standardization of instrument models in use by the community.

10CCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and
Mueller, J. L. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0, I[OCCG, Dartmouth, NS, Canada.



= QQuality assurance and quality control
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Quality assurance entails process-oriented actions ensuring the correct execution of

measurements.

1. Instruments are calibrated & characterized

2. Measurement protocols are respected
3.

Quality control entails product-oriented actions embracing all post-generation steps
Suppomng the provision of high-quality data (Bushnell et al. 2019, 2020)

Post-field calibration are within expected thresholds with respect to pre-field calibration

Comply with basic QC thresholds (e.g., dark values, radiance values, ratios of specific radiometric quantities, ...)
Relative consistency among data collected over similar regions

Spectral consistency (e.g., lack of any spectral artifact)

Tlemporal consistency (e.g., successive spectra do not exhibit unexplainable differences in shape and amplitude)

SV RN
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Error bars indicate: i. 2o of the spectral value for the reference spectra contributing to the
determination of the “Prototype”; ii. #2 u(Lwn) quantified for the “Candidate” spectrum.

G. Zibordi, D. D’ Alimonte, T. Kajiyama (2022). Automated Quality Control of AERONET-OC Ly, data. Journal of Atmospheric and Oceanic Technology, (submitted).



[] Errors and Uncertainties
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Errors indicate differences between actual and measured values (often introduce biases). If identified, they
should be corrected.

Uncertainty is a parameter associated with the result of a measurement characterizing the dispersion of the
values that could be reasonably attributed to the measurand. Uncertainties indicate doubts and are an estimate
of the range between actual and measured values (in other words, they express the “reliability” of the
measurement).

Type A: Uncertainties evaluated by the statistical analysis of series of observations

Type B: Uncertainties evaluated by means other than the statistical analysis of series of observations

Standard uncertainty: uncertainty of a measurement expressed as a standard deviation (coverage factor k=1)

Combined standard uncertainty: standard uncertainty of the result of a measurement obtained from the
composition of a number of other standard uncertainties (i.e., individual uncertainty contributions).



& Uncertainties (combined uncertainties for Ly, from in-water profiles)
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Uncertainty budget (in percent) for Lyn determined from in-water profile data

Uncertainty source 443 555 665
Absolute calibration of Lu 2.7 2.7 2.7
Immersion factor 0.2 0.2 0.2
Self-shading correction 0.5 0.3 1.3
Absolute calibration of Es 2.3 2.3 2.3
Cosine response correction 0.5 0.5 0.5
Anisotropy correction 0.4 0.9 0.5
Eo determination 1.9 0.8 0.2
Environmental effects 2.1 2.2 3.2
Quadrature sum 4.6 4.4 5.0

The various sources of uncertainty are
all assumed independent, an added in
quadrature as:

U(LWN)/m = z u?/m

The above table does not include contributions related to temperature response, polarization sensitivity, stray-
lights, nonlinearity (i.e., the radiometers are assumed to exhibit ideal performance, except for cosine response).

Neglecting corrections may lead to an obvious underestimates of uncertainties. Noteworthy, compensation
processes may minimize systematic effects for given measurement conditions or conversely lead to potential
spectral effects (e.g., due to unaccounted self-shading perturbations).

1OCCG Protocol Series (2019). Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. Zibordi, G., Voss, K. J., Johnson, B. C. and
Mueller J. L. IOCCG Ocean Optics and Biogeochemistrv Protocols for Satellite Ocean Colour Sensor Validation. Volume 3.0. I[OCCG. Dartmouth. NS. Canada.



& Quantification of uncertainties following GUM
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Given the measurement equation

Lyn=Ly C4Cp with Ly=Ly-pL;
where the term C, is introduced to remove the dependence from the viewing geometry and the bidirectional
effects, while the term C, removes the basic dependence on sun zenith, atmosphere and sun-earth distance;
without considering correlations among input quantities and non-linearity of the measurement model, the
application of the Guide to the Expression of Uncertainty in Measurement (GUM) would suggest that
the combined standard uncertainty of the normalized water-leaving radiance # (L) 1s given by the first-
order expansion of Taylor series of the measurement equation

a2(Lw) = (CoCa) @2(Lw) + (LwCa) u2(Co) + (LwCo) u2(Ca)

aZ(Lw) = u*(Lt) + Liu?(p) + p?u?(L;) .

The uncertainty u(Lr;), indicating either u(Ly) or u(L;), neglecting instrument non-ideal performance, should
include contributions related to absolute calibration, sensitivity change during the deployment period of the
measuring system, and environmental perturbations mostly caused by sea surface roughness and
environmental changes during measurement sequences.

with

M. Gergely and G. Zibordi, “Assessment of AERONET Ly, uncertainties,” Metrologia 51, 4047 (2014).



[ L uncertainties from AW radiometry following GUM
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Target uncertainties for in situ data should reflect EO requirements.

T 8.0r — ——
The generic 5% uncertainty requirement often stated in literature ﬁ iy ‘ NADR
does not reflect actual requirements/capabilities when considering 3 M | N
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standard uncertainties u(Ly,, ) and median Ly, (mW cm=2 sr™! um™),
respectively, at different A (nm) for various AERONET-OC sites.

M. Gergely and G. Zibordi, “Assessment of AERONET Ly, uncertainties,” Metrologia 51, 40-47 (2014).



B Adjacency perturbations
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Adjacency perturbations at the satellite sensor as a
function of the distance from the coast for
representative center-wavelengths and surfaces.

Bulgarelli, B., & Zibordi, G. (2018). On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiF'S, MODIS-A, MERIS,
OLCI, OLI and MSI. Remote sensing of Environment, 209, 423-438.



Breakout Session [

Finalization of recommendations for minimum/compulsory:

* Priority measurements

* Instruments specifications and requirements;

o [nstruments calibration and characterization,

* Measurement protocols and data processing,

* Quality Assurance of measurements and Quality Control of products,
* Uncertainty estimate,

* Inter-calibrations and Inter-comparisons

& time permitting on.

* Generic field measurement requirements;
* Requirements for matchups construction,
* Revision/update and translation of current protocols.
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NV AW~

Generic 1n situ sampling requirements

. Instruments calibrated/characterized

. Protocols respected (e.g., viewing geometry)
. Environmental conditions (e.g., clear sky)

Sampling fulfilling temporal/spatial needs (e.g., spatial variability)
Superstructure perturbations avoided/minimized
Adjacency effects avoided/minimized



ﬂ Matchup-construction requirements

1. Number of pixels for the box centered at the measurement site

2. Illumination and viewing constrains (max sun zenith and viewing angle)

3. Minimization of the impact of noise and spatial variability (thresholds on VC)
4. Constrains imposed by adjacency perturbations (distance from coast)

5. Flags application (flags from data products)
6. ...



[ | __ Ob]ectzve of the talk and following discussion
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In sim Instruments
Observational Platforms
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\ Processing Software

Considering current technology
and know-how, would it be possible
to recommend (or enforce) best-
practices for in situ measurements
supporting the validation of
satellite derived data products for
inland and coastal waters?

Integration schematic of the fundamental elements of aquatic color satellite remote sensing

Mouw, C. B., Greb, S., Aurin, D., DiGiacomo, P. M., Lee, Z., Twardowski, M

..... & Craig, S. E. (2015). Aquatic color radiometry remote sensing of coastal and inland waters:

Challenges and recommendations for future satellite missions. Remote sensing of environment, 160, 15-30.



= Fixed-depth v.s. Continuous Profile Data
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0 0 : o[ \ll
: ; ‘ ... the method of assigning vertical profiles
: of the downward 1rradiance E, and its
ol 5 5 diffuse coefficient K, on the basis of the
= = | = data measured during vertical movement of
- = = the probe in the most upper layer of the sea
;:} E‘L ;% is improper, or at least extremely inaccurate
a4l 4 a4l (an Anonymous Reviewer).
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As long as discrete deployment depths are properly selected, fixed-depth and continuous profile data products

are equivalent (i.e., inter-comparisons exhibit statistical differences lower than the composition of the
uncertainties from individual methods).

G.Zibordi et al. An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters. JTECH, 26, 91-106 2009.
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Self-Shading

Self-shading perturbations can be estimated as a
function of the radiometer geometry and the water
optical properties (conveniently expressed by the
instrument radius and the water absorption
coefficient, respectively).

Note the idealized instrument geometry relies on
radiometers shaped as disks

30F o
[ Sun zenith = 25.7 degrees ]
25 Date = 27 5 94 .

20

Gordon H R, Ding K (1992) Self-shading of in—water optical instruments. Limnol Oceanogr 37:491-500.
Zibordi G. and Ferrari G.M. (1995), Instrument self shading in underwater optical .... Applied Optics, 34: 2750-2754.



7 Sea surface reflectance

Joint Research Centre

Sky-glint contains sky radiance contributions from a variety of zenith and azimuth angles, not only from the
specular reflection of an ideal flat sea surface, which increases modelling complexity. In certain cases sun-glint
and foam contributions may add to sky-glint, and lead to a significant spectral dependence of p.

The previous elements combined with the time scale (tens milliseconds to seconds) and spatial extent of L;
measurements (varying from a few up to several hundreds of cm?, depending on the field-of-view and height

above the water), reduce the effectiveness of any statistical modeling of p at low sun zenith angles and with
increasing wind speed.

The respect of recommended viewing
geometries is essential. The minimization
of the impact of high-glint contributions
through filtering was also shown to be an
essential pre-processing element.

C.Mobley, Estimation of remote-sensing reflectance from above surface measurements. Applied Optics, 38: 7442-7455,1999.
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Field inter-comparisons, duly
supported by laboratory
calibrations and characterizations,
offer a unique solution for the
verification of protocols
implementation and instrument
performance.

They also offer an excellent way
for know-how transfer.

Comparison of Ry from a variety of above-water and in-water radiometer systems/methods
with respect to the reference values determined with an in-water profiler system/method.

Zibordi, G., Ruddick, K., Ansko, 1., Moore, G., Kratzer, S., Icely, J., & Reinart, A. (2012). In situ determination of the remote sensing reflectance: an inter-comparison.
Ocean Science, 8(4), 567-586



0| In-Air Absolute Irradiance & Radiance Calibrations
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Standard Plaque
Baffles
Baffles Standard Lamp
Standard lamp (FEL 1000%)
(FEL 1000 |\ 1 (e .4 ___ [/
@) - o)
E,(0)
Sensor
Sensor
— 2 -
Ce(r) = Eo(M) (do/d)* / (Dy(A)-Do(2)) Cu(h) = Eg(L) (do/d) (p(A) / ) ¢, (8) / (Dy(A)-Do(M)
Cg: Calibration coefficient C,: Calibration coefficient
Ey: Lamp Irradiance at distance d, Eo: Lamp Irradiance at distance d,
Dy: Sensor output with the source at distance d Dy: Sensor output with the source at distance d from the Plaque
Dy: Sensor output without any source (dark signal) D,: Sensor output without any source (dark signal)

0 : Reflectance of the Standard Plaque
c,: Correction factor for the Plaque (c,=1 if lambertian)



[y Immersion Factor /; (irradiance)

Joint Research Centre

—
w
o

Screen Data Logger Monitoring Radiometer | |
d — Air | I
7 I I
E | o | Ma |
Fan ol | or |
Data Acquistion v g Water | n |
Computer \ DVMs Shunt E | W E, |
r
| l& |
[ i Coll, | 2
] ollector
[ ] L] ” E,
oooo| |ooaog ) / t,
oooao oooo @n E
—|—— O O Lamp, Screen and Aperture g (na) 4 ‘ lr”
0 L ool 1| [ J3eo 7 Detector P —————
000 [290 i Adjustable Aperture
}(\ }"\ AN £ 3 "
\ \ T 1 = ComPACT Tank 1.45 Mo torm
1 ith milliQ Wat u
Radiometers Lamp 1 / (with milli) Water) o
Control Unit  Current Source In-Water Radiometer - Eu109
1 ©1.40 ® Eu098
[ / Drainage Tank § A Eu048
rd
c A Ed097
Data Logger o 1.35
‘» O Ed050
— — B
£ L
E 0
]

The immersion factor of irradiance sensors must be experimentally
determined. It may vary by several percent from unit to unit because | 25 — Average
of mechanical/optical differences affecting collectors. 400 500 600 700

Wavelength [nm]

G.Zibordi et al. Characterization of the immersion factor ... . Journal of Atmospheric and Oceanic Technology, 21:501-514, 2004.
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Temperature response is often
overlooked. Unapplied corrections
may become the source of intra-
band inconsistencies.

Zibordi, G., et al., 2017. Response to Temperature of ... . Journal of Atmospheric and Oceanic Technology, 34(8), pp.1795-1805.
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Measurement configurations applied for the determination
the polarimetric characteristics of radiance sensors

Flow diagram for the determination of the polarimetric characteristics of a radiometer
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Talone, M. and Zibordi, G., 2016. Polarimetric characteristics of ...
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. Applied Optics, 55(35), 10092-10104.

Reflectance Plagque

Light is polarized.
Appreciable polarization
sensitivity of radiometers
due dispersive components

(e.g., diffraction gratings)
should be corrected.



Straylights perturbations
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Finally, non-linearity of response
may also become the source of
measurement artefacts.

Talone, M. and Zibordi, G., 2018. Nonlinear response of a class of hyper-spectral radiometers. Metrologia.
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Zibordi, G., Holben, B. N., Talone, M., D’ Alimonte, D., Slutsker, L., Giles, D. M., & Sorokin, M. G. (2021). Advances in the ocean color component of the aerosol
robotic network (AERONET-OC). Journal of Atmospheric and Oceanic Technology, 38(4), 725-746
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