Impact of WIVERN wind observations on NWP Arpege model using an Ensemble Data Assimilation method

Nicolas Sasso ¹, Mary Borderies¹, Anthony Illingworth², Alessandro Battaglia³, Maryam Pourshamsi⁴, Philippe Chambon ¹, Loik Berre¹, Jean-Francois Mahfouf¹,

Météo-France / DESR / CNRM
University of Reading, Reading,UK
Politecnico di Torino, Torino, Italy
ESA-ESTEC, Noordwijk, Netherlands

International Wind Workshop Group 16, Montreal 8 -12 may 2023

Context

- Lack of direct wind observations in the current WMO Global Observing System (OSCAR 2018).
- To fulfill this gap, WIVERN mission was selected by ESA as one of the Earth Explorer 11 candidate missions to enter Phase 0 (down selection to enter phase A in october 2023).
- Conically scanning dual-polarisation Doppler W band radar.
- 800km wide swath and a vertical resolution of 640m.
- Horizontal resolution $\approx 20 km$.
- In-cloud wind observations.

Objectives

- Assimilate simulated WIVERN observations to evaluate its impact on NWP model forecasts.
- Compare this impact with other existing wind observations (AEOLUS)

Objectives

- Assimilate simulated WIVERN observations to evaluate its impact on NWP model forecasts.
- Compare this impact with other existing wind observations (AEOLUS)

Outline

- Methodology : use of an Ensemble Data Assimilation (**EDA**) approach.
- Impact assessments.

The EDA method from ECMWF

- EDA consists in a finite number of 4DVar analysis to provide flow-dependent background error statistics (operational at MF since July 2008).
- Since 15 years, ECMWF use EDA to study the impact of new observations (*Tan et al. 2007, Harnisch et al. 2013, Lean et al. 2022*).

The EDA method from ECMWF

- EDA consists in a finite number of 4DVar analysis to provide flow-dependent background error statistics (operational at MF since July 2008).
- Since 15 years, ECMWF use EDA to study the impact of new observations (*Tan et al. 2007, Harnisch et al. 2013, Lean et al. 2022*).

 Allows to assimilate simulated observations along with real observations (cheaper than OSSEs).

Experimental setup

Parameters of the experiments :

Run	AEOLUS Cloudy	AEOLUS Clear	WIVERN	Others
Reference	-	-	-	х
AEOLUS Mie-Cloudy	x	-	-	х
AEOLUS Rayleigh-Clear	-	x	-	х
WIVERN	-	-	x	х
AEOLUS (all) + WIVERN	x	x	х	х

 Period of study : 08/09/2021 - 03/10/2021 → 25 days period

Definition of the EDA spread ratio.

Definition of the metric following Lean et al. 2022 and Bormann et al. 2023

$$I(z) = \frac{s_{run}(z) - s_{ref}(z)}{s_{ref}(z)}$$

with s_{run} and s_{ref} the EDA spread of respectively the run and the reference run.

• I < 0 means a positive impact of the assimilation of new observations.

Results: first assimilation time.

1 Orbits of WIVERN over a 6h assimilation time.

Results: first assimilation time.

2 WIVERN simulated observation locations, at an altitude of 644 hPa.

Results: first assimilation time.

3 2D field of spread ratio at an altitude of 644 hPa.

7/11

- Significant impact on of WIVERN the lower troposphere
- Complementarity between AEOLUS and WIVERN(In-clouds measurements).

- Significant impact on of WIVERN the lower troposphere
- Complementarity between AEOLUS and WIVERN(In-clouds measurements).

Global vertical profiles over a 25 days period

Effect of radar sensitivity Z_{min} over a 25-days period

- Experiments without AEOLUS data assimilation.
- The positive impact of WIVERN increases with the sensitivity.
- Lower effect of sensitivity in the tropics.

Conclusions

- First mission to observe in-cloud wind observations at a global scale.
- Significant positive impact of the assimilation of WIVERN HLOS winds on reducing EDA spread.
- Complementarity with AEOLUS wind observations on the vertical.

Perspectives

- On-going work : sensitivity to observation error σ_o .
- \blacksquare Poor period for AEOLUS \rightarrow Evaluate complementarity with AEOLUS-2 simulated winds.

The EDA method

Linear relationship between forecast error reduction and EDA spread reduction.

Bormann et al., 2023

Lean et al., 2022

Simulated WIVERN observations :

