001/*
002 * This file is part of McIDAS-V
003 *
004 * Copyright 2007-2025
005 * Space Science and Engineering Center (SSEC)
006 * University of Wisconsin - Madison
007 * 1225 W. Dayton Street, Madison, WI 53706, USA
008 * https://www.ssec.wisc.edu/mcidas/
009 * 
010 * All Rights Reserved
011 * 
012 * McIDAS-V is built on Unidata's IDV and SSEC's VisAD libraries, and
013 * some McIDAS-V source code is based on IDV and VisAD source code.  
014 * 
015 * McIDAS-V is free software; you can redistribute it and/or modify
016 * it under the terms of the GNU Lesser Public License as published by
017 * the Free Software Foundation; either version 3 of the License, or
018 * (at your option) any later version.
019 * 
020 * McIDAS-V is distributed in the hope that it will be useful,
021 * but WITHOUT ANY WARRANTY; without even the implied warranty of
022 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
023 * GNU Lesser Public License for more details.
024 * 
025 * You should have received a copy of the GNU Lesser Public License
026 * along with this program.  If not, see https://www.gnu.org/licenses/.
027 */
028package edu.wisc.ssec.mcidasv.util;
029
030/* NeuQuant Neural-Net Quantization Algorithm
031 * ------------------------------------------
032 *
033 * Copyright (c) 1994 Anthony Dekker
034 *
035 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
036 * See "Kohonen neural networks for optimal colour quantization"
037 * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
038 * for a discussion of the algorithm.
039 *
040 * Any party obtaining a copy of these files from the author, directly or
041 * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
042 * world-wide, paid up, royalty-free, nonexclusive right and license to deal
043 * in this software and documentation files (the "Software"), including without
044 * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
045 * and/or sell copies of the Software, and to permit persons who receive
046 * copies from any such party to do so, with the only requirement being
047 * that this copyright notice remain intact.
048 */
049
050// Ported to Java 12/00 K Weiner
051
052public class NeuQuant {
053
054    protected static final int netsize = 256; /* number of colours used */
055
056    /* four primes near 500 - assume no image has a length so large */
057    /* that it is divisible by all four primes */
058    protected static final int prime1 = 499;
059    protected static final int prime2 = 491;
060    protected static final int prime3 = 487;
061    protected static final int prime4 = 503;
062
063    protected static final int minpicturebytes = (3 * prime4);
064    /* minimum size for input image */
065
066        /* Program Skeleton
067           ----------------
068           [select samplefac in range 1..30]
069           [read image from input file]
070           pic = (unsigned char*) malloc(3*width*height);
071           initnet(pic,3*width*height,samplefac);
072           learn();
073           unbiasnet();
074           [write output image header, using writecolourmap(f)]
075           inxbuild();
076           write output image using inxsearch(b,g,r)      */
077
078        /* Network Definitions
079           ------------------- */
080
081    protected static final int maxnetpos = (netsize - 1);
082    protected static final int netbiasshift = 4; /* bias for colour values */
083    protected static final int ncycles = 100; /* no. of learning cycles */
084
085    /* defs for freq and bias */
086    protected static final int intbiasshift = 16; /* bias for fractions */
087    protected static final int intbias = (((int) 1) << intbiasshift);
088    protected static final int gammashift = 10; /* gamma = 1024 */
089    protected static final int gamma = (((int) 1) << gammashift);
090    protected static final int betashift = 10;
091    protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
092    protected static final int betagamma =
093            (intbias << (gammashift - betashift));
094
095    /* defs for decreasing radius factor */
096    protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
097    protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
098    protected static final int radiusbias = (((int) 1) << radiusbiasshift);
099    protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
100    protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
101
102    /* defs for decreasing alpha factor */
103    protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
104    protected static final int initalpha = (((int) 1) << alphabiasshift);
105
106    protected int alphadec; /* biased by 10 bits */
107
108    /* radbias and alpharadbias used for radpower calculation */
109    protected static final int radbiasshift = 8;
110    protected static final int radbias = (((int) 1) << radbiasshift);
111    protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
112    protected static final int alpharadbias = (((int) 1) << alpharadbshift);
113
114        /* Types and Global Variables
115        -------------------------- */
116
117    protected byte[] thepicture; /* the input image itself */
118    protected int lengthcount; /* lengthcount = H*W*3 */
119
120    protected int samplefac; /* sampling factor 1..30 */
121
122    //   typedef int pixel[4];                /* BGRc */
123    protected int[][] network; /* the network itself - [netsize][4] */
124
125    protected int[] netindex = new int[256];
126    /* for network lookup - really 256 */
127
128    protected int[] bias = new int[netsize];
129    /* bias and freq arrays for learning */
130    protected int[] freq = new int[netsize];
131    protected int[] radpower = new int[initrad];
132    /* radpower for precomputation */
133
134    /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
135       ----------------------------------------------------------------------- */
136    public NeuQuant(byte[] thepic, int len, int sample) {
137
138        int i;
139        int[] p;
140
141        thepicture = thepic;
142        lengthcount = len;
143        samplefac = sample;
144
145        network = new int[netsize][];
146        for (i = 0; i < netsize; i++) {
147            network[i] = new int[4];
148            p = network[i];
149            p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
150            freq[i] = intbias / netsize; /* 1/netsize */
151            bias[i] = 0;
152        }
153    }
154
155    public byte[] colorMap() {
156        byte[] map = new byte[3 * netsize];
157        int[] index = new int[netsize];
158        for (int i = 0; i < netsize; i++)
159            index[network[i][3]] = i;
160        int k = 0;
161        for (int i = 0; i < netsize; i++) {
162            int j = index[i];
163            map[k++] = (byte) (network[j][0]);
164            map[k++] = (byte) (network[j][1]);
165            map[k++] = (byte) (network[j][2]);
166        }
167        return map;
168    }
169
170    /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
171       ------------------------------------------------------------------------------- */
172    public void inxbuild() {
173
174        int i, j, smallpos, smallval;
175        int[] p;
176        int[] q;
177        int previouscol, startpos;
178
179        previouscol = 0;
180        startpos = 0;
181        for (i = 0; i < netsize; i++) {
182            p = network[i];
183            smallpos = i;
184            smallval = p[1]; /* index on g */
185            /* find smallest in i..netsize-1 */
186            for (j = i + 1; j < netsize; j++) {
187                q = network[j];
188                if (q[1] < smallval) { /* index on g */
189                    smallpos = j;
190                    smallval = q[1]; /* index on g */
191                }
192            }
193            q = network[smallpos];
194            /* swap p (i) and q (smallpos) entries */
195            if (i != smallpos) {
196                j = q[0];
197                q[0] = p[0];
198                p[0] = j;
199                j = q[1];
200                q[1] = p[1];
201                p[1] = j;
202                j = q[2];
203                q[2] = p[2];
204                p[2] = j;
205                j = q[3];
206                q[3] = p[3];
207                p[3] = j;
208            }
209            /* smallval entry is now in position i */
210            if (smallval != previouscol) {
211                netindex[previouscol] = (startpos + i) >> 1;
212                for (j = previouscol + 1; j < smallval; j++)
213                    netindex[j] = i;
214                previouscol = smallval;
215                startpos = i;
216            }
217        }
218        netindex[previouscol] = (startpos + maxnetpos) >> 1;
219        for (j = previouscol + 1; j < 256; j++)
220            netindex[j] = maxnetpos; /* really 256 */
221    }
222
223    /* Main Learning Loop
224       ------------------ */
225    public void learn() {
226
227        int i, j, b, g, r;
228        int radius, rad, alpha, step, delta, samplepixels;
229        byte[] p;
230        int pix, lim;
231
232        if (lengthcount < minpicturebytes)
233            samplefac = 1;
234        alphadec = 30 + ((samplefac - 1) / 3);
235        p = thepicture;
236        pix = 0;
237        lim = lengthcount;
238        samplepixels = lengthcount / (3 * samplefac);
239        delta = samplepixels / ncycles;
240        alpha = initalpha;
241        radius = initradius;
242
243        rad = radius >> radiusbiasshift;
244        if (rad <= 1)
245            rad = 0;
246        for (i = 0; i < rad; i++)
247            radpower[i] =
248                    alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
249
250        //fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);
251
252        if (lengthcount < minpicturebytes)
253            step = 3;
254        else if ((lengthcount % prime1) != 0)
255            step = 3 * prime1;
256        else {
257            if ((lengthcount % prime2) != 0)
258                step = 3 * prime2;
259            else {
260                if ((lengthcount % prime3) != 0)
261                    step = 3 * prime3;
262                else
263                    step = 3 * prime4;
264            }
265        }
266
267        i = 0;
268        while (i < samplepixels) {
269            b = (p[pix + 0] & 0xff) << netbiasshift;
270            g = (p[pix + 1] & 0xff) << netbiasshift;
271            r = (p[pix + 2] & 0xff) << netbiasshift;
272            j = contest(b, g, r);
273
274            altersingle(alpha, j, b, g, r);
275            if (rad != 0)
276                alterneigh(rad, j, b, g, r); /* alter neighbours */
277
278            pix += step;
279            if (pix >= lim)
280                pix -= lengthcount;
281
282            i++;
283            if (delta == 0)
284                delta = 1;
285            if (i % delta == 0) {
286                alpha -= alpha / alphadec;
287                radius -= radius / radiusdec;
288                rad = radius >> radiusbiasshift;
289                if (rad <= 1)
290                    rad = 0;
291                for (j = 0; j < rad; j++)
292                    radpower[j] =
293                            alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
294            }
295        }
296        //fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha);
297    }
298
299    /* Search for BGR values 0..255 (after net is unbiased) and return colour index
300       ---------------------------------------------------------------------------- */
301    public int map(int b, int g, int r) {
302
303        int i, j, dist, a, bestd;
304        int[] p;
305        int best;
306
307        bestd = 1000; /* biggest possible dist is 256*3 */
308        best = -1;
309        i = netindex[g]; /* index on g */
310        j = i - 1; /* start at netindex[g] and work outwards */
311
312        while ((i < netsize) || (j >= 0)) {
313            if (i < netsize) {
314                p = network[i];
315                dist = p[1] - g; /* inx key */
316                if (dist >= bestd)
317                    i = netsize; /* stop iter */
318                else {
319                    i++;
320                    if (dist < 0)
321                        dist = -dist;
322                    a = p[0] - b;
323                    if (a < 0)
324                        a = -a;
325                    dist += a;
326                    if (dist < bestd) {
327                        a = p[2] - r;
328                        if (a < 0)
329                            a = -a;
330                        dist += a;
331                        if (dist < bestd) {
332                            bestd = dist;
333                            best = p[3];
334                        }
335                    }
336                }
337            }
338            if (j >= 0) {
339                p = network[j];
340                dist = g - p[1]; /* inx key - reverse dif */
341                if (dist >= bestd)
342                    j = -1; /* stop iter */
343                else {
344                    j--;
345                    if (dist < 0)
346                        dist = -dist;
347                    a = p[0] - b;
348                    if (a < 0)
349                        a = -a;
350                    dist += a;
351                    if (dist < bestd) {
352                        a = p[2] - r;
353                        if (a < 0)
354                            a = -a;
355                        dist += a;
356                        if (dist < bestd) {
357                            bestd = dist;
358                            best = p[3];
359                        }
360                    }
361                }
362            }
363        }
364        return (best);
365    }
366    public byte[] process() {
367        learn();
368        unbiasnet();
369        inxbuild();
370        return colorMap();
371    }
372
373    /* Unbias network to give byte values 0..255 and record position i to prepare for sort
374       ----------------------------------------------------------------------------------- */
375    public void unbiasnet() {
376
377        int i, j;
378
379        for (i = 0; i < netsize; i++) {
380            network[i][0] >>= netbiasshift;
381            network[i][1] >>= netbiasshift;
382            network[i][2] >>= netbiasshift;
383            network[i][3] = i; /* record colour no */
384        }
385    }
386
387    /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
388       --------------------------------------------------------------------------------- */
389    protected void alterneigh(int rad, int i, int b, int g, int r) {
390
391        int j, k, lo, hi, a, m;
392        int[] p;
393
394        lo = i - rad;
395        if (lo < -1)
396            lo = -1;
397        hi = i + rad;
398        if (hi > netsize)
399            hi = netsize;
400
401        j = i + 1;
402        k = i - 1;
403        m = 1;
404        while ((j < hi) || (k > lo)) {
405            a = radpower[m++];
406            if (j < hi) {
407                p = network[j++];
408                try {
409                    p[0] -= (a * (p[0] - b)) / alpharadbias;
410                    p[1] -= (a * (p[1] - g)) / alpharadbias;
411                    p[2] -= (a * (p[2] - r)) / alpharadbias;
412                } catch (Exception e) {
413                } // prevents 1.3 miscompilation
414            }
415            if (k > lo) {
416                p = network[k--];
417                try {
418                    p[0] -= (a * (p[0] - b)) / alpharadbias;
419                    p[1] -= (a * (p[1] - g)) / alpharadbias;
420                    p[2] -= (a * (p[2] - r)) / alpharadbias;
421                } catch (Exception e) {
422                }
423            }
424        }
425    }
426
427    /* Move neuron i towards biased (b,g,r) by factor alpha
428       ---------------------------------------------------- */
429    protected void altersingle(int alpha, int i, int b, int g, int r) {
430
431        /* alter hit neuron */
432        int[] n = network[i];
433        n[0] -= (alpha * (n[0] - b)) / initalpha;
434        n[1] -= (alpha * (n[1] - g)) / initalpha;
435        n[2] -= (alpha * (n[2] - r)) / initalpha;
436    }
437
438    /* Search for biased BGR values
439       ---------------------------- */
440    protected int contest(int b, int g, int r) {
441
442        /* finds closest neuron (min dist) and updates freq */
443        /* finds best neuron (min dist-bias) and returns position */
444        /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
445        /* bias[i] = gamma*((1/netsize)-freq[i]) */
446
447        int i, dist, a, biasdist, betafreq;
448        int bestpos, bestbiaspos, bestd, bestbiasd;
449        int[] n;
450
451        bestd = ~(((int) 1) << 31);
452        bestbiasd = bestd;
453        bestpos = -1;
454        bestbiaspos = bestpos;
455
456        for (i = 0; i < netsize; i++) {
457            n = network[i];
458            dist = n[0] - b;
459            if (dist < 0)
460                dist = -dist;
461            a = n[1] - g;
462            if (a < 0)
463                a = -a;
464            dist += a;
465            a = n[2] - r;
466            if (a < 0)
467                a = -a;
468            dist += a;
469            if (dist < bestd) {
470                bestd = dist;
471                bestpos = i;
472            }
473            biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
474            if (biasdist < bestbiasd) {
475                bestbiasd = biasdist;
476                bestbiaspos = i;
477            }
478            betafreq = (freq[i] >> betashift);
479            freq[i] -= betafreq;
480            bias[i] += (betafreq << gammashift);
481        }
482        freq[bestpos] += beta;
483        bias[bestpos] -= betagamma;
484        return (bestbiaspos);
485    }
486}