[Go to Previous] [Go to Next]


Jython Library

Module: grid

This is the doc for the grid module

applyToRange(function, data):

Apply the function name to each timestep of the data

applyToRangeValues(function, data):

Apply the function name to each value in each timestep of the data

averageOverTime(field, makeTimes):

Average the values in each time step If makeTimes is true (1) then we return a field mapping all of the times to the average. Else we just return the average

combineFields():

combine several fields together

extractLatitudeFromNWPGrid(fieldimpl):

Get the latitude coordinate from a grid. Return a grid of the latitudes at each point.

extractPressureFromNWPGrid(fieldimpl):

Get the pressure coordinate from a time series grid and return a grid of the pressure at all points. Input grid must have pressure or height (which is converted to pressure in the standard atmosphere). User must be sure input is a suitable FlatField.

getAltitude(z):

Change units from geopotential meters to meters

getNthTimeGrid(fieldimpl, Nth):

Get the Nth grid in time series of grids; User must be sure input is a suitable data field. returns a single time. Nth is an integer, >=0, <= max index of grid time series.

getSliceAtAltitude(fieldimpl, alt, unit):

Extract a 2D horizontal slice from a 3D grid at the given altitude; level is a real number; if unit is supplied, it must be compatible with meters (ft, fathoms, etc) param fieldimpl is a grid which may have one or more time steps.

getSliceAtLevel(fieldimpl, level):

Extract a 2D horizontal slice from a 3D grid at "Level." level is a real number; must be appropriate for the grid. param fieldimpl is a grid which may have one or more time steps.

horizontalAdvection(param, u, v):

horizontal advection

horizontalDivergence(param, u, v):

horizontal flux divergence

layerAverage(grid, top, bottom):

Wrapper for calculating layer average

layerDiff(grid, top, bottom):

Wrapper for calculating layer difference

make2D(slice):

Make a 2D slice from a 3D slice at a single level

makeFlowField(a, b, c):

Make a vector from 3 components

makeVector(a,b) = [a,b,c]

makeTimeSequence(g):

Merge a set of single time grids/images into a time sequence

makeTrueVector(u, v):

true wind vectors

makeVector(a, b):

Make a vector from 2 components

makeVector(a,b) = [a,b]

newName(field, varname, copy):

create a new field with a new parameter name

newUnit(field, varname, unitname):

set the name and unit on a grid

resampleGrid(oldGrid, gridwithNewDomain):

display gridded data on a new domain

windShear(u, v, z, top, bottom):

calculate the wind shear between discrete layers

shear = sqrt((u(top)-u(bottom))^2 + (v(top)-v(bottom))^2)/zdiff

windShearVector(u, v, top, bottom):

calculate the u and v layer difference and return as vector

writeGridToXls(grid, filename):

Write out the grid data to an excel spreadsheet

Module: griddiag

This is the doc for the Grid Diagnostics module. These functions are based on the grid diagnostics from the GEneral Meteorological PAcKage (GEMPAK). Note that the names are case sensitive and some are named slightly different from GEMPAK functions to avoid conflicts with Jython built-ins (e.g. str).

In the following operators, scalar operands are named Si and vector operands are named Vi. Lowercase u and v refer to the grid relative components of a vector.


GRAVITY():

Gravity constant

add(S1, S2):

Addition

ADD (S1, S2) = S1 + S2

adv(S, V):

Horizontal Advection, negative by convention

ADV ( S, V ) = - ( u * DDX (S) + v * DDY (S) )

age(obs, geo):

Ageostrophic wind

AGE ( S ) = [ u (OBS) - u (GEO(S)), v (OBS) - v (GEO(S)) ]

atn2(S1, S2):

Wrapper for atan2 built-in

ATN2 (S1, S2) = ATAN ( S1 / S2 )

avg(S1, S2):

Average of 2 scalars

AVG (S1, S2) = ( S1 + S2 ) / 2

avor(V):

Absolute Vorticity

AVOR ( V ) = VOR ( V ) + CORL(V)

corl(S):

Coriolis Parameter for all points in a grid

CORL = TWO_OMEGA*sin(latr)

cros(V1, V2):

Vector cross product magnitude

CROS ( V1, V2 ) = u1 * v2 - u2 * v1

ddx(S):

Take the derivative with respect to the domain's X coordinate

ddy(S):

Take the derivative with respect to the domain's Y coordinate

defr(V):

Total deformation

DEF ( V ) = ( STRD (V) ** 2 + SHR (V) ** 2 ) ** .5

div(V):

Horizontal Divergence

DIV ( V ) = DDX ( u ) + DDY ( v )

dot(V1, V2):

Vector dot product

DOT ( V1, V2 ) = u1 * u2 + v1 * v2

dvdx(V):

Partial x derivative of a vector

DVDX ( V ) = [ DDX (u), DDX (v) ]

dvdy(V):

Partial x derivative of a vector

DVDY ( V ) = [ DDY (u), DDY (v) ]

frnt(S, V):

Frontogenesis function from theta and the wind

FRNT ( THTA, V ) = 1/2 * MAG ( GRAD (THTA) ) * ( DEF * COS (2 * BETA) - DIV ) Where: BETA = ASIN ( (-DDX (THTA) * COS (PSI) - DDY (THTA) * SIN (PSI))/ MAG ( GRAD (THTA) ) ) PSI = 1/2 ATAN2 ( SHR / STR )

geo(z):

geostrophic wind from height

GEO ( S ) = [ - DDY (S) * const / CORL, DDX (S) * const / CORL ]

grad(S):

Gradient of a scalar

GRAD ( S ) = [ DDX ( S ), DDY ( S ) ]

inad(V1, V2):

Inertial advective wind

INAD ( V1, V2 ) = [ DOT ( V1, GRAD (u2) ), DOT ( V1, GRAD (v2) ) ]

jcbn(S1, S2):

Jacobian Determinant

JCBN ( S1, S2 ) = DDX (S1) * DDY (S2) - DDY (S1) * DDX (S2)

lap(S):

Laplacian operator

LAP ( S ) = DIV ( GRAD (S) )

latr(S):

Latitudue all points in a grid

lav(S, level1, level2):

Layer Average

LAV ( S ) = ( S (level1) + S (level2) ) / 2.

ldf(S, level1, level2):

Layer Average

LDF ( S ) = S (level1) - S (level2)

mag():

Magnitude of a vector

mixr(temp, rh):

Mixing Ratio from Temperature, RH (requires pressure domain)

mul(S1, S2):

Multiply

MUL (S1, S2) = S1 * S2

quo(S1, S2):

Divide

QUO (S1, S2) = S1 / S2

qvec(S, V):

Q-vector at a level ( K / m / s )

QVEC ( S, V ) = [ - ( DOT ( DVDX (V), GRAD (S) ) ), - ( DOT ( DVDY (V), GRAD (S) ) ) ] where S can be any thermal parameter, usually THTA.

sdiv(S, V):

Horizontal Flux Divergence

SDIV ( S, V ) = S * DIV ( V ) + DOT ( V, GRAD ( S ) )

shr(V):

Shear Deformation

SHR ( V ) = DDX ( v ) + DDY ( u )

strd(V):

Stretching Deformation

STRD ( V ) = DDX ( u ) - DDY ( v )

sub(S1, S2):

Subtract

SUB (S1, S2) = S1 - S2

thrm(S, level1, level2):

Thermal wind

THRM ( S ) = [ u (GEO(S)) (level1) - u (GEO(S)) (level2), v (GEO(S)) (level1) - v (GEO(S)) (level2) ]

thta(temp):

Potential Temperature from Temperature (requires pressure domain)

thte(temp, rh):

Equivalent Potential Temperature from Temperature and Relative humidity (requires pressure domain)

un(V):

North relative u component

ur(V):

Grid relative u component

vadd(V1, V2):

add the components of 2 vectors

VADD (V1, V2) = [ u1+u2, v1+v2 ]

vecr(S1, S2):

Make a vector from two components

VECR ( S1, S2 ) = [ S1, S2 ]

vlav(V, level1, level2):

calculate the vector layer average

VLDF(V) = [(u(level1) - u(level2))/2, (v(level1) - v(level2))/2]

vldf(V, level1, level2):

calculate the vector layer difference

VLDF(V) = [u(level1) - u(level2), v(level1) - v(level2)]

vmul(V1, V2):

Multiply the components of 2 vectors

VMUL (V1, V2) = [ u1*u2, v1*v2 ]

vn(V):

North relative v component

vor(V):

Relative Vorticity

VOR ( V ) = DDX ( v ) - DDY ( u )

vquo(V1, V2):

Divide the components of 2 vectors

VQUO (V1, V2) = [ u1/u2, v1/v2 ]

vr(V):

Grid relative v component

vsub(V1, V2):

subtract the components of 2 vectors

VSUB (V1, V2) = [ u1-u2, v1-v2 ]

wshr(V, Z, top, bottom):

Magnitude of the vertical wind shear in a layer

WSHR ( V ) = MAG [ VLDF (V) ] / LDF (Z)

Module: image


combineRGB(red, green, blue):

combine 3 images as an RGB image

makeNavigatedImage(d, ulLat, ulLon, lrLat, lrLon):

This takes a image data object and a lat/lon bounding box and adds a lat/lon domain to the data. Use it in conjunction with a formula:

Module: maps


averageFromMap(field, mapSets):

mapSets defines a set of polygons. This procedure fills the areas in the field are enclosed by each polygon with the average value within that area

averageRangeFromMap(range, timeStep, mapSets):

mapSets defines a set of polygons. This procedure fills the areas in the field are enclosed by each polygon with the average value within that area

filterMaps(mapSets, propName, operator, value):

Return a new set of maps whose property propName satisfies the given operator/value. The operators can be ==,!=, <,>,<=,>=, match, !match

getMapProperty(polygon, propName):

Get the named property from the given mapData

getMapsWithProperty(mapSets, propName, value):

Return a new set of maps that have the given property value

make3DMap(map, topo):

Make a 3d map. map - map line data - topo - topography dataset

makeFieldFromMapBounds(mapSets, length1, length2, fill, unit):

Make a field whose lat/lon area is the bounds of the given mapSet. It has length1 points in the x and length2 in the y. Fill it with the fill value and the given unit

subsetFromMap(field, mapSets, fillValue, inverse):

mapSets defines a set of polygons. This procedure fills the areas in the field that are not enclosed by the polygons with the fill value. If inverse is 1 then it fills the areas that are enclosed

subsetRangeFromMap(range, timeStep, mapSets, fillValue, inverse):

mapSets defines a set of polygons. This procedure fills the areas in the field that are not enclosed by the polygons with the fill value. If inverse is 1 then it fills the areas that are enclosed

subsetRangeWithProperty(range, mapSets):

test code

subsetWithProperty(field, mapSets):

test code

Module: shell

A set of utilities for selecting data and creating displays. For use from the Jython shell.

clear():

Clear the shell

createDisplay(displayType, data, dataName):

create a display of type displayType. Right click in input field to select particular displayType. The data is can be a data object, a datachoice or a list of data or datachoices The dataName is used to name the data, i.e., its the parameter name

findDataSource(name):

Find the data source object with the given name. If no name is given then this will return the first (non-formula) data source

getData(dataSourceName, dataChoiceName):

Find the data source with the given name and the data choice on that data source with the given name. If no dataSourceName is given then use the first one in the list If no dataChoiceName is given then use the first one held by the data source Return the data for the data choice. If no data source or data choice is found then return null

getDataChoice(dataSourceName, dataChoiceName):

Find the data source with the given name and the data choice on that data source with the given name. If no dataSourceName is given then use the first one in the list If no dataChoiceName is given then use the first one held by the data source Return the data choice If no data source or data choice is found then return null

listVars():

List all of the variables defined in the shell's interpreter

makeDataSource(path, type):

Create a datasource from the given file name or url. The optional type parameter is used to specify the type of data

printType(data):

Print out the math type of the given data

selectData(name1, name2, name3, name4, name5):

Select up to 5 data fields. This returns a List of the actual Data objects

selectDataChoice(name1, name2, name3, name4, name5):

Select up to 5 data choices. This returns a List of the data choices, not the actual Data To get the data do:

dataList.get(0).getData(None)

setDataChoices(dataSource):

The given dataSource can be an actual data source or the name of a data source. This procedure will define a set of jython variables that correspond to the data choices held by the given data source.

setDataSources():

This procedure will define a set of jython variables, 'dataSource0, dataSource1, ...' that correspond to loaded data sources.

showLib():

Bring up the jython library dialog

Module: misc

A set of miscellaneous utilities.

idveval(formula):

evaluate a formula

makeFloatArray(rows, cols, value):

A utility to make a 2 dimensional float array filled with the given value


[Go to Previous] [Go to Next]