

Contributors

Gennady Uymin, Ryan Aschbrenner, Karen Cady-Pereira, Bob d'Entremont, Richard Lynch (AER)

Yong Han, Paul VanDelst, Quanhua Liu, Fuzhong Weng (NOAA/NESDIS)

Dave Mitchell (DRI)

OSS overview

- Overview of the approach
- Forward model
- General attributes
- OSS/OPTRAN comparison
- Generalized training
 - Clear/cloudy training
 - Inversion issue
- Treatment of multiple scattering
 - Validation against CHARTS
 - Application to AIRS
- Summary/future work

OSS method (Moncet *et al.* 2003, 2001) models the channel radiance as
UKMO profile (dry), Threshold=0.05K

$$\overline{R} = \int_{\Delta v} \phi(v) R(v) dv \cong \sum_{i=1}^{N} w_i R(v_i);$$

der

Atmospheric and Environmental Research, Inc.

- Wavenumber n; (nodes) and weights w; are determined by fitting "exact" calculations (from line-by-line model) for globally representative set of atmospheres (training set)
- Radiance training is fast and provides mechanism for directly including slowly varying functions (e.g. Planck, surface emissivity) in the selection process

Relationship between OSS and ESFT/correlated-*k* methods

ESFT (Wiscombe and Evans, 1977) for single layer, single absorber case: Selected nodes $\overline{\tau}(u) = \int e^{-k_{\nu}u} d\nu \approx \sum \mathbf{w}_{i} e^{-k_{i}u}$ $w_2 = \frac{\Delta v_2}{\Delta v} = \sum_{k=1}^{K(2)} \frac{\Delta v_{2k}}{\Delta v}$ $\overline{R} = \sum w_i R_{v_i}$ i=2Extension to multiple absorbers along inhomogeneous path (e.g. Armbruster i = 1and Fisher, 1996) $\overline{\tau}(p) = \int \tau_{v}(p) dv \approx \sum w_{i} e^{-\sum_{l} \sum_{m} k_{i}^{m}(P_{l},T_{l})}$ (2,4) (2,5) (i,k) = (2,1) (2,2)(2.3) Λv **OSS solution:** $|\overline{\tau}(p) \approx \sum w_i e^{-\sum_l \sum_m w_i}$

Extension of ESFT to inhomogeneous atmospheres with multiple absorbers reduces the problem to a single (wavenumber) dimension and ensures that the solution is physical

Localized versus non-localized training

Localized training (*reference*) operates on individual channels, one at a time – node redundancy due to overlapping ILS

aer

Atmospheric and Environmental Research, Inc.

- AIRS (2378 channels):
 - Average # nodes per channel: ~9 nodes/channel
 - Total number of nodes/number of channel (i.e. no redundancy) = 1.9 nodes/channel

- Non-localized training operates on groups of N channels (up to full channel set)
 - Exploits node-to-node correlation to minimize total number of nodes across a spectral domain (regression!!!)
 - Results in significant increase in number of points in any given channel increases
 - Critical for MODTRAN (range 0-50,000 cm⁻¹)

1.0

Number of Selected Points

OSS Forward Model

RTM structure

- Main loop is the node loop
- Internal channel loop to update channel radiance and Jacobians
- Similar structure adopted for CRTM
- LUT of *kabs* stored for all relevant molecules as a function of temperature
 - Self broadening included for water vapor
 - Maximum brightness temperature error with current LUT < 0.05K in infrared and <~0.01K in microwave
- Use simple monochromatic RT model (clear or scattering)
 - Jacobians (required for retrieval applications) are straightforward in the clear-sky (e.g. CrIS ATBD)

- Atmospheric and Environmental Research. Inc.
 - RT model designed to handle any number of variable trace species
 - Adding a new variable species requires no change in OSS parameterization
 - No change in RTM required
 - Only need to include variability in training (number of nodes may increase as a result)
 - # of variable trace gases and molecule type specified on node-by-node basis (set by the user at run time)
 - Average number of trace gases absorbing at any given frequency << total number of absorbing species in the atmosphere
 - Computationally efficient and minimizes memory requirements
 - Inexpensive Jacobian computation:

$$\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{u}_l^m} = \frac{\partial \boldsymbol{y}}{\partial \tau_{abs,l}^0} \boldsymbol{k}_l^m$$

Optimal Spectral Sampling (OSS) method

- OSS absorption parameterization leads to *fast* and *numerically* accurate RT modeling:
 - OSS-based RT model can approach line-by-line calculations arbitrarily closely
 - Adjustable numerical accuracy:
 - Possibility of trade off between accuracy and speed
 - Unsupervised training

der

Atmospheric and Environmental Research, Inc.

- No empirical adjustment: cuts significantly on cost of testing approximations and validating model
- Provides flexible handling of (variable) trace molecular species
 - Designed to handle large number of variable trace species w/o any change to model – low impact on computational cost
 - Selection of variable trace gases at run time
- Memory requirements do not change whether we are dealing with one or more instruments
 - Execution speed primarily driven by total spectral coverage and maximum spectral resolution (not by number of instruments)
- Leads to accurate handling of multiple scattering (cloudy radiance assimilation)

Used in NPOESS/ CrIS, CMIS and OMPS (IR) retrieval algorithms

JCSDA CRTM

- Compared with OPTRAN at NOAA for AMSU, SSMIS, HIRS-3, GOES imager/sounder, AIRS
 - Accuracy and timing
- Beta version of OSS-based CRTM about to be tested at NCEP to evaluate impact on forecast
- Other comparison results from ITSC comparison (Garand et al. 2001), and recent ITSC AIRS comparison (Saunders et al., 2005)
- Currently working on integrating into MODTRAN (AFRL- sponsored effort)
 - Wide array of users and applications
 - Same method should cover it all
- NASA's Mars Fundamental Research Program: OSS forward model has been developed for the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor spacecraft (Christensen et al. 2001).

JCSDA OPTRAN/OSS (localized training) comparison

Atmospheric and Environmental Research, Inc.

OPTRAN/OSS comparison: AIRS

Atmospheric and Environmental Research, Inc. (from NOAA, 2005)

aer

OSS Trained with ECMWF set Tested with UMBC set (Training accuracy = 0.05K)

OPTRAN Trained with UMBC set Tested with ECMWF set

Time needed to process 48 profiles with 7 observation angles (336 profiles)

	OPTRAN-V7	OPTRAN-comp	OSS
	Forward, Jacobian + Forward	Forward, Jacobian + Forward	Jacobian + Forward
AIRS	7m20s, <mark>22m36s</mark>	10m33s, <mark>35m12s</mark>	3m10s
HIRS	4s,	5s,	
	13s	17s	9s

Memory resource required (Megabytes)

	OPTRAN-V7 single, double precision	OPTRAN-comp double precision	OSS
AIRS	33, 66	5	97**
HIRS	0.26, 0.5	0.04	4

**With OSS: Based on 0.05K accuracy -No increase in size when adding other IR instruments

Atmospheric and Environmental Research, Inc.

Jacobians

- OSS Jacobian accuracy commensurate with model accuracy
 - Unlike OPTRAN (trained to fit transmittances for individual absorbers), OSS fits total transmittance/radiance (OPTRAN equivalent training obtained by zeroing out major absorber concentration)
 - Jacobians for weakly absorbing constituents not as accurate when impact on radiances of (global) variability in concentration is less than model accuracy

Generalized training

Performance example (AIRS)

Speed gain ~ 20 compared to localized training for AIRS

Examples of error spatial distribution

aer

Atmospheric and Environmental Research, Inc.

Must include slowly varying cloud/aerosol optical properties in training

- Over wide bands: training can be done by using a database of cloud/aerosol optical properties
- More general training obtained by breaking spectrum in intervals of the order of 10 cm⁻¹ in width (impact of variations in cloud/aerosol properties on radiances is quasi-linear) and by performing independent training for each interval
 - lower computational gain but increased robustness
- Direct cloudy radiance training not recommended !
 - Clouds tend to mask molecular structure which makes training easier
 - If "recipe" for mixture of clear and cloudy atmospheres in direct training not right: clear-sky performance degrades

Single/multi-channel cloudy training over wide spectral domains

- Alternate two-step training preserves clear-sky solution
 - First step: normal clear-sky (transmittance/radiance) training to model molecular absorption
 - Second step: duplicate + redistribute nodes across spectral domain and recompute weights to incorporate slowly varying functions into the model

 $R_{i}^{cld}(\nu_{k}) = a_{ik}R_{i}^{cld}(\nu_{1}) + (1 - a_{ik})R_{i}^{cld}(\nu_{2})$ $R_{i}^{cld}(\nu_{2})$ $R_{i}^{cld}(\nu_{1})_{\perp}$ $\overline{k} = 1$ 2 3 4 5

 $\overline{R} = \sum_{i} w_{i} \sum_{k} \left(a_{ik} R_{i} \left(v_{1} \right) + \left(1 - a_{ik} \right) R_{i} \left(v_{2} \right) \right) \frac{\Delta v_{ik}}{\Delta v_{i}} = \sum_{i} w_{i}' R_{i} \left(v_{1} \right) + \left(w_{i} - w_{i}' \right) R_{i} \left(v_{2} \right)$

Robust, physical approach for including slowly varying functions (e.g. cloud optical properties, surface emissivity) into OSS formalism

Cloudy training preserves clear-sky solution

Inversion

Variational retrieval methods:

- Average channel uses ~150 nodes
- Mapping Jacobians from node to channel space partially offsets speed gain

Alternatives:

- A. PC (reduces first dimension of matrix A)
- B. Operate directly in node space

$$\mathbf{y}^{\mathbf{m}} = \mathbf{A}\tilde{\mathbf{y}}^{\mathbf{m}} \to \hat{\tilde{\mathbf{y}}}^{\mathbf{m}} = \mathbf{H}\mathbf{y}^{\mathbf{m}}$$

- Avoids Jacobians transformation all together and reduce K-matrix size (inversion speed up)
 - for AIRS: 2378 channels -> 250 nodes

$$\delta x_{n+1} = \left(\mathbf{K}_{n}^{T} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K}_{n} + \mathbf{S}_{x}^{-1}\right) \mathbf{K}_{n}^{T} \mathbf{S}_{\varepsilon}^{-1} \left[\left(y_{n} - y^{m} \right) + \mathbf{K}_{n} \delta x_{n} \right],$$

where,
$$\mathbf{y} = \mathbf{A} \tilde{\mathbf{y}} \text{ and}$$
$$\mathbf{K} = \mathbf{A} \tilde{\mathbf{K}}$$

$$\tilde{\mathbf{y}}^{\mathrm{m}} = \left(\mathbf{A}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{A}\right)^{-1} \mathbf{A} \mathbf{S}_{\varepsilon}^{-1} \mathbf{y}^{\mathrm{m}}$$

$$\tilde{\mathbf{S}}_{\varepsilon}^{-1} = \mathbf{A}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{A}$$

$$\delta \mathbf{x}_{\mathrm{n+1}} = \left(\tilde{\mathbf{K}}_{\mathrm{n}}^{\mathrm{T}} \tilde{\mathbf{S}}_{\varepsilon}^{-1} \tilde{\mathbf{K}}_{\mathrm{n}} + \mathbf{S}_{\mathrm{x}}^{-1}\right) \tilde{\mathbf{K}}_{\mathrm{n}}^{\mathrm{T}} \tilde{\mathbf{S}}_{\varepsilon}^{-1} \left[\left(\tilde{\mathbf{y}}_{\mathrm{n}} - \tilde{\mathbf{y}}^{\mathrm{m}}\right) + \tilde{\mathbf{K}}_{\mathrm{n}} \delta \mathbf{x}_{\mathrm{n}} \right]^{**}$$

**Equivalent to

$$\delta \mathbf{x}_{n+1} = \left(\mathbf{K}_{n}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \mathbf{K}_{n} + \mathbf{S}_{x}^{-1}\right) \mathbf{K}_{n}^{\mathrm{T}} \mathbf{S}_{\varepsilon}^{-1} \left[\left(\mathbf{A} \mathbf{H} \mathbf{y}_{n} - \tilde{\mathbf{y}}^{m}\right) + \mathbf{K}_{n} \delta \mathbf{x}_{n} \right]$$

Inversion (cont.)

Atmospheric and Environmental Research, Inc.

Application to Scattering Atmospheres

OSS/CHARTS Comparison

- CHARTS (Moncet and Clough, 1997):
 - Fast adding-doubling scheme for use with LBLRTM
 - Uses tables of layer reflection/transmittance as a function of total absorption computed at run time
 - Validation against measurements from Rotating Shadowband Spectroradiometer (RSS) spectra at the ARM/SGP site

Atmospheric and Environmental Research, Inc.

• OSSSCAT:

Atmospheric and Environmental Research, Inc.

aer

- Single wavelength version of CHARTS (no spectral interpolation)
- Cloudy validation:
 - Molecular absorption from 740-900 cm⁻¹ domain
 - 1cm⁻¹ boxcars, thermal only
 - Cloud extinction OD range: 0-100
- Example:
 - 780-860 cm⁻¹
 - Low cloud case (925-825 mb)

OSS/CHARTS Comparison (3)

CHARTS (High Cloud): SSA=0.5 CHARTS-OSS (High Cloud): SSA=0.5 300 0.2 Brightness Temperature Difference (K) 280 0.1 Brightness Temperature (K) 260 240 220 -0.1 200 180 -0.2 780 800 820 840 860 780 800 820 840 860 Wavenumber (cm-1) Wavenumber (cm-1) CHARTS (High Cloud): SSA=0.95 CHARTS-OSS (High Cloud): SSA=0.95 300 0.2 Brightness Temperature Difference (K) 280 Brightness Temperature (K) 0.1 260 240 220 -0. Cloud OI Cloud Of 200 10 20 50 180 Atmos 780 820 840 800 860 780 800 820 840 8605 Wavenumber (cm-1) Wavenumber (cm-1)

Same as previous
 High cloud case (300-200 mb)

Clear sky training adequate in thermal regime

Refinement in training needed for thick clouds (OD > 50) when SSA approaches 1 and high scan angles

Cirrus cloud microphysics parameterization

Size distribution is strongly bi-modal

Atmospheric and Environmental Research, Inc.

aer

- Mid-latitude cirrus
 - Small mode:
 - fixed shape recipe (16% bulletrosettes, 31% planar polycrystal / irregular – 53% quasi-spherical)
 - Large mode:
 - Temperaturedependent shape recipe
- Tropical cirrus
 - Small mode:
 - 40% planar polycrystals, 60% quasi-spherical
 - Large mode:
 - 30% hexagonal, 65% planar poly-crystals, 5% hexagonal plates
 - Strong temperature dependence of size distribution shape

Comparing T-Matrix, MADA, and Measured Qext

Atmospheric and

aer

- Testing MADA against cloud chamber Q_{evt} measurements and against Tmatrix theory using observed size distribution
- Effective diameter was 14 microns

References: (Mitchell, 2000, 2002)

MADA optical properties (tropical cirrus)

aer

Atmospheric and Environmental Research, Inc.

Application to AIRS

Single FOV 1DVAR retrieval

- Atmosphere/SST from NCEP/GDAS
- Adjusted parameters:
 - Cloud top/thickness
 - Ice particles effective diameter (Deff)
 - o IWP
 - Effective temperature
- MODIS 1st guess
 - AER/SERCAA cloud algorithms
- RTM:
 - OSSSCAT (100 layers)
 - 4-streams

GOES imagery

Retrieved cloud product

Atmospheric and Environmental Research, Inc.

Calculated vs. measured cloudy AIRS spectra

aer

Atmospheric and Environmental Research, Inc.

Summary/future work

Localized training (reference):

- already offers higher numerical accuracy (both in clear and cloudy atmospheres) and significant speed gain over current OPTRAN based RT model
- Used for NPOESS/ATMS CrIS (older version) and CMIS EDR algorithms
- Considered for operations at NCEP for processing of current operational sensors (including AIRS)

Non-localized (generalized) training:

- Potential for high computational gains (over localized training) for high spectral resolution IR sounders
 - Forward model is only one component of inversion algorithm
 - Further work needed to improve overall inversion speed
- Work on going for applications to land (spectrally variable surface emissivity) and cloudy atmosphere (spectrally variable cloud properties)

Cloud modeling/retrieval in cloudy conditions

- Applied to AIRS cloud property retrieval
- Develop fast parameterizations for real-time application (already available for EO imaging instruments)
- Extend validation of RT model/cloud property parameterization to microwave (NPOESS/CMIS) and near-IR/visible region (AFRL/MODTRAN and MODIS applications)
- Collaboration with NOAA-CU Center for Environmental Technology (CET) NOAA Earth System Research Laboratory to include analytical Jacobians in scattering model
 - Goal: simultaneous retrieval of cloud and atmospheric composition Atmospheric and Environmental Research, Inc.

Summary/future work (cont.)

- Refine handling of solar source (clear/cloudy) in near-IR region
- Validate treatment of surface reflectivity over land
- Other focus areas:
 - improvement in molecular spectroscopy in both microwave and IR
 - Broadband flux/heating rate calculations

OSS vs. LBLRTM - AIRS clear-sky, ARM TWP site (08/12/08)

Summary/future work (cont.)

- Refine handling of solar source (clear/cloudy) in near-IR region
- Validate treatment of surface reflectivity over land
- Other focus areas:
 - improvement in molecular spectroscopy in both microwave and IR
 - Broadband flux/heating rate calculations

OSS vs. LBLRTM - AIRS clear-sky, ARM TWP site (08/12/08)

