#!/usr/bin/env python # encoding: utf-8 """ An example config file for comparing soundings data. Created by Eva Schiffer Oct 2010. Copyright (c) 2010 University of Wisconsin SSEC. All rights reserved. """ import glance.filters as filters # various general settings to control how reports are created settings = {} # whether or not images should be generated and shown in the report settings['shouldIncludeImages'] = True # should the two original data sets for a variable be plotted in the same range? settings['useSharedRangeForOriginal'] = True # if you are on craackly set this to True, otherwise, set it to False settings['useThreadsToControlMemory'] = True settings['doFork'] = False # the names of the latitude and longitude variables that will be used lat_lon_info = {} lat_lon_info['longitude'] = 'imager_prof_retr_abi_Lon_reduced' # the name of the longitude variable lat_lon_info ['latitude'] = 'imager_prof_retr_abi_Lat_reduced' # the name of the latitude variable # this value can be used to control how similar the longitude and latitude must be to be considered matching # Note: this value is ment to let you avoid very small floating point errors that would make glance # think that your data is different, when really it is very close together. If you put a large number in here # the plots may be misleading. lat_lon_info['lon_lat_epsilon'] = 0.000 # variable defaults # values defined in variable descriptions (in the setOfVariables) will override these defaults # # if these defaults are not defined , glance will fall back on it's internal defaults. #defaultValues = { # 'epsilon': 0.0, # the acceptable difference between file A and file B # 'missing_value': -999, # the value to be interpreted as "missing" data # } defaultValues = { 'epsilon': 0.0, 'epsilon_failure_tolerance': None, 'nonfinite_data_tolerance': None } # a list of all the variables to analyze # # you must define variable entries in the form # setOfVariables['variable_name'] = {'variable_name': 'the variable name in your file'} # # there are many other things you can specify. please see the glance config file documentation for details setOfVariables = {} setOfVariables['Cloud Mask'] = { # this entry should correspond to the name in the data file 'variable_name': 'baseline_cmask_abi_cloud_mask', } setOfVariables['Total_Totals'] = { 'variable_name': 'imager_prof_retr_abi_TT', 'epsilon': 0.0, } setOfVariables['Total_Precipitable_Water'] = { 'variable_name': 'imager_prof_retr_abi_TPW', 'epsilon': 0.0, } setOfVariables['Total_Precipitable_WaterHigh'] = { 'variable_name': 'imager_prof_retr_abi_TPW_High', 'epsilon': 0.0, } setOfVariables['Total_Precipitable_WaterLow'] = { 'variable_name': 'imager_prof_retr_abi_TPW_Low', 'epsilon': 0.0, } setOfVariables['Total_Precipitable_WaterMid'] = { 'variable_name': 'imager_prof_retr_abi_TPW_Mid', 'epsilon': 0.0, } setOfVariables['Land_Surface_Temperature'] = { 'variable_name': 'imager_prof_retr_abi_Lst', } setOfVariables['K_Index'] = { 'variable_name': 'imager_prof_retr_abi_KI', 'epsilon': 0.0, } setOfVariables['CAPE'] = { 'variable_name': 'imager_prof_retr_abi_CAPE', 'epsilon': 0, } setOfVariables['Lifted_Index'] = { 'variable_name': 'imager_prof_retr_abi_LI', 'epsilon': 0.0, } setOfVariables['Showalter_Index'] = { 'variable_name': 'imager_prof_retr_abi_SI', 'epsilon': 0, } # here is how to load only one level of the Temperature Profile setOfVariables['Temperature_Profile_300'] = { 'variable_name': 'imager_prof_retr_abi_Tprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 64)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 64)) } setOfVariables['Temperature_Profile_500'] = { 'variable_name': 'imager_prof_retr_abi_Tprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 76)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 76)) } setOfVariables['Temperature_Profile_850'] = { 'variable_name': 'imager_prof_retr_abi_Tprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 92)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 92)) } setOfVariables['Water_Profile_300'] = { 'variable_name': 'imager_prof_retr_abi_Wprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 64)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 64)) } setOfVariables['Water_Profile_500'] = { 'variable_name': 'imager_prof_retr_abi_Wprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 76)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 76)) } setOfVariables['Water_Profile_850'] = { 'variable_name': 'imager_prof_retr_abi_Wprof', 'data_filter_function_a': (lambda data: filters.get_sounding_profile_at_index(data, 92)), 'data_filter_function_b': (lambda data: filters.get_sounding_profile_at_index(data, 92)) }