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ABSTRACT

A fast physically based dual-regression (DR) method is developed to produce, in real time, accurate profile

and surface- and cloud-property retrievals from satellite ultraspectral radiances observed for both clear- and

cloudy-sky conditions. The DR relies on using empirical orthogonal function (EOF) regression ‘‘clear trained’’

and ‘‘cloud trained’’ retrievals of surface skin temperature, surface-emissivity EOF coefficients, carbon dioxide

concentration, cloud-top altitude, effective cloud optical depth, and atmospheric temperature, moisture, and

ozone profiles above the cloud and below thin or broken cloud. The cloud-trained retrieval is obtained using

cloud-height-classified statistical datasets. The result is a retrieval with an accuracy that is much higher than that

associated with the retrieval produced by the unclassified regression method currently used in the International

Moderate Resolution Imaging Spectroradiometer/Atmospheric Infrared Sounder (MODIS/AIRS) Processing

Package (IMAPP) retrieval system. The improvement results from the fact that the nonlinear dependence of

spectral radiance on the atmospheric variables, which is due to cloud altitude and associated atmospheric

moisture concentration variations, is minimized as a result of the cloud-height-classification process. The de-

tailed method and results from example applications of the DR retrieval algorithm are presented. The new DR

method will be used to retrieve atmospheric profiles from Aqua AIRS, MetOp Infrared Atmospheric Sounding

Interferometer, and the forthcoming Joint Polar Satellite System ultraspectral radiance data.

1. Introduction

The advent of accurate high-spectral-resolution radi-

ance measurements from satellites has ushered in

a new era of global atmospheric sounding applications

(Smith 1991; Hilton et al. 2012). Important for weather

applications, these new satellite ultraspectral radiance

observations permit the retrieval of atmospheric tem-

perature and water vapor profiles with much higher

vertical resolution than was achievable with predecessor

multispectral lower-spectral-resolution radiance mea-

surements (Smith et al. 2009). The term ultraspectral

is used to convey the spectral resolution (i.e., the

Corresponding author address: William L. Smith, Cooperative

Institute for Meteorological Satellite Studies, University of

Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706.

E-mail: bill.l.smith@cox.net

AUGUST 2012 S M I T H E T A L . 1455

DOI: 10.1175/JAMC-D-11-0173.1

� 2012 American Meteorological Society



wavenumber increment that is resolved divided by the

wavenumber of the observation) being better than 1%

and providing more than 1000 spectral channels of

radiance information. Because the ultraspectral radi-

ance measurements are obtained for thousands of

spectral channels, computationally fast methods for

retrieving the atmospheric profiles from radiometric

data are required for operational use of the data. It is

important to use the data from as many spectral chan-

nels as possible so as to retrieve atmospheric thermo-

dynamic features with high spatial resolution, because

the profile information content and the radiometric

signal to noise influencing the retrieval resolution in-

crease with the number of spectral channels utilized in

the retrieval process. This improvement is true even

when using spectral channels within the radiance spec-

trum that possess physically redundant information,

because the signal to noise affecting the retrieval process

increases with the square root of the number of spectral

channels used (Smith et al. 2009). Thus, to optimize the

real-time use of these ultraspectral radiance data for

the weather analysis/forecast operation, computation-

ally efficient linear processing algorithms are required.

Furthermore, the earth’s surface characteristics and the

influence of clouds must be taken into account to max-

imize the yield of these high-spatial-resolution sounding

retrievals over land and under all-sky conditions. Also,

because the spectral radiance measurements are non-

linearly dependent on cloud altitude and moisture con-

centration, classification methods must be used to be

able to achieve accurate profiles under all cloud and

associated relative humidity conditions. This paper

presents a geophysical product retrieval algorithm that

meets the requirements mentioned above for the real-time

production of accurate atmospheric profile, surface, and

cloud products from the satellite ultraspectral-resolution

radiance measurements. The retrieval algorithm described

below is to be integrated into the Cooperative Institute

of Meteorological Satellite Studies (CIMSS) Interna-

tional Moderate Resolution Imaging Spectroradiometer/

Atmospheric Infrared Sounder (MODIS/AIRS) Pro-

cessing Package (IMAPP). It will also form the basis for

a new Joint Polar Satellite System Processing Package

(JPSSPP), which can be used to process MetOp Infra-

red Atmospheric Sounding Interferometer (IASI) and

National Polar-Orbiting Operational Environmental

Satellite System (NPOESS) Preparatory Project (NPP)/

Joint Polar Satellite System (JPSS) Cross-Track Infra-

red Sounder (CrIS) data.

In this paper, section 2 describes the algorithm, in-

cluding its physical/theoretical basis, the statistical

training datasets, radiative transfer model, and quality-

control method. Section 3 presents a comparison of the

accuracy of the results obtained with this new dual-

regression cloud-classified regression algorithm with

that associated with the original single-regression un-

classified IMAPP algorithm for both statistically inde-

pendent and statistically dependent validation datasets.

The practical significance of the algorithm is shown by

the results of two case studies involving its application

to AIRS and IASI radiance observations for two intense

weather situations: 1) Hurricane Isabel and 2) the Joplin,

Missouri, tornado. The paper concludes by summa-

rizing the results and discussing its future applications

to the ultraspectral radiance data to be obtained by

the JPSS.

2. Method

a. Overview

The development of computationally efficient re-

trieval methods for application to the large number of

spectral radiances provided by an ultraspectral infrared

(IR) instrument has been of interest ever since the High-

Resolution Interferometer Sounder (HIS) flew on the

National Aeronautics and Space Administration (NASA)

ER-2 aircraft during the mid-1980s (Smith 1991;

Zhou et al. 2005; Blackwell 2005; Liu et al. 2009). The

sounding-retrieval method is a fast physical–statistical

algorithm intended for the retrieval of atmospheric

profiles as well as surface and cloud parameters from

satellite ultraspectral radiance observations. The term

statistical is used to denote the fact that the solution

depends upon the statistical properties of the spectral

radiances, atmospheric profiles, surface parameters, and

cloud parameters contained in a statistical training

dataset. The term physical is used because the solution

depends on theoretical calculations of radiance corre-

sponding to the atmospheric, surface, and cloud condi-

tions provided in nine (i.e., one clear and eight different

overlapping cloud-height ranges) geophysical-variable

statistical training datasets (Zhou et al. 2005). The

physical dual-regression (DR) method utilizes two types

of eigenvector [empirical orthogonal function (EOF)]

regression, ‘‘clear trained’’ and ‘‘cloud trained,’’ retrie-

vals of surface skin temperature, surface emissivity EOF

coefficients (EOFCs), carbon dioxide (CO2) concen-

tration, cloud-top altitude, effective cloud optical depth,

and atmospheric temperature, moisture, and ozone

profiles above the cloud and below thin or broken cloud.

The clear-trained regression relates the surface and

atmospheric-profile parameters to their associated

radiance spectra produced by radiative transfer com-

putations assuming clear-sky atmospheric conditions.

The cloud-trained regression relates the surface, cloud,
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and atmospheric-profile parameters to their associ-

ated radiance spectra calculated using a cloud radiative

transfer model, assuming cloud parameters diagnosed

from the atmospheric humidity profiles. The initial

cloud height and the retrieval cloud-height class for an

individual retrieval are specified as a weighted average

of the cloud heights produced from the eigenvector re-

gression solutions for the two cloud-height classes that

yield values closest to their cloud-class median value.

The final value of the ‘‘thermal-cloud-top’’ altitude is as-

sumed to be the altitude below which the clear-trained

temperature retrieval remains colder than the cloud-

trained temperature profile or a model-analysis tempera-

ture profile, whichever is warmer than the clear-trained

temperature-profile retrieval. The model analysis tem-

perature profile is obtained from the National Centers

for Environmental Prediction (NCEP) Global Data

Assimilation System (GDAS). The DR method com-

bines the clear-trained retrieval with the cloud-trained

retrieval to produce accurate retrievals for both clear-

and cloudy-sky conditions. The final profile retrieval is

taken as the clear-trained solution above the thermal-

cloud-top level and as the cloud-trained solution below

the thermal-cloud-top level. Note that the profile below

the thermal-cloud-top level is rejected (i.e., declared to

be missing) when the maximum difference between the

cloud-trained and clear-trained solutions exceeds 25 K.

The ‘‘highest possible’’ cloud top is considered to be the

higher of the thermal cloud top and the highest altitude

above 300 hPa in which the clear-trained retrieved rel-

ative humidity exceeds 70%. The theoretical calcula-

tions of radiance required to produce the nine sets of

regression coefficients used for the retrieval are per-

formed only once, offline, for global sets of the geo-

physical data so that the retrieval process is very fast.

The cloud-altitude-stratified DR retrieval procedure

alleviates the need for a more-time-consuming optimal-

estimation matrix-inversion physical retrieval to ac-

count for the nonlinear dependence of spectral radiance

on cloud altitude and atmospheric moisture.

b. Physical/mathematical basis

The physical–statistical-regression sounding-retrieval

algorithm has the form

qret 5 q0 1 (rm 2 r0)C, (1)

where the vector rm is the measured radiance spectrum

and the retrieval vector qret represents the retrieved

atmospheric profiles of temperature, water vapor, ozone,

CO2 column concentration, surface skin temperature,

surface-emissivity EOFCs, cloud-top pressure, and

cloud optical depth. Here, C is a statistical-regression

FIG. 1. Global mean (left) AIRS and (right) IASI brightness temperature spectra (black), with the spectral region used for the DR

retrieval shown in red.

FIG. 2. Comparison of eigenvalues of the AIRS (dashed line) and

IASI (solid line) radiance spectra corresponding to the statistical

samples of soundings used to derive the DR retrieval coefficients.
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coefficient matrix computed from surface and atmo-

spheric state vector and associated computed radiance

spectra deviations from ensemble means qo and ro,

respectively. The statistical-regression coefficient matrix

C is given by

C 5 (R9TR91 ETE)21R9TQ9, (2)

where the matrices Q and R are climatological ensem-

bles of atmospheric states (i.e., surface and cloud para-

meters, CO2 column concentration, and atmospheric

temperature, water vapor, and ozone profiles), and asso-

ciated computed radiance spectra. The prime symbol

represents a deviation from the initial conditions qo and

ro. Here, ETE is a statistical covariance of spectral ra-

diance noise. To insure stability in the solution for C, the

radiances used in (2) are expressed in terms of a limited

number of eigenvectors of the training-dataset-calculated

radiance covariance matrix [i.e., eigenvector regression

(Smith and Woolf 1976; Smith et al. 2004, 2005; Zhou

et al. 2005) is used]. Thus, the radiance errors ETE are

expressed in terms of the errors in the EOFCs resulting

from expected measurement and forward-model error.

For AIRS, 1449 of the 2378 available spectral channel

radiances, expressed in terms of 30 EOFCs (Weisz et al.

2007a), are used; for IASI, 7021 of the 8461 available

spectral channel radiances, expressed in terms of 50

EOFCs, are used. Figure 1 shows the spectral coverage

of the channels used for the DR AIRS and IASI

retrievals. Descriptions of the AIRS and IASI can be

found, respectively, in Chahine et al. (2006) and Hilton

et al. (2012). Figure 2 shows the comparison of eigen-

values of the AIRS and IASI radiance spectra derived

from the statistical samples of clear and cloudy sound-

ings used to derive the DR retrieval coefficients. It can

be seen from Fig. 2 that the higher-spectral-resolution

IASI radiance spectra provide more linearly in-

dependent pieces of information than do the AIRS

FIG. 3. Schematic diagram of the DR retrieval process; FM refers to the ‘‘forward model’’ used

for radiative transfer calculations.
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FIG. 4. Comparison of bias (dashed curves) and std dev (solid curves) errors of the original IMAPP unstratified

retrievals (black) and the cloud-height-stratified DR retrievals (red) from radiances simulated for the training dataset

for (a) the entire sample of soundings using regression coefficients derived from the entire dependent sample of

soundings, (b) 25% of the statistical sample using regression coefficients that are based on the independent remaining

75% of the statistical sample of soundings (i.e., independent sample statistics), and (c) the same 25% of the statistical

sample used for (b), but on the basis of regression coefficients derived from the entire dependent statistical sample of

soundings (i.e., dependent sample statistics).
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spectra. Thus, more EOFCs can be used as regression

predictors for IASI retrievals than for AIRS retrievals.

The DR relies on using eigenvector-regression clear-

trained and cloud-trained retrievals of surface skin

temperature, surface emissivity principal-component

scores, CO2 concentration, cloud-top altitude, effective

cloud optical depth, and atmospheric temperature, mois-

ture, and ozone profiles above the cloud and below thin

FIG. 5. (a) Comparison of AIRS training-dataset RMS deviation errors for the original IMAPP unstratified re-

trievals (dashed curves) and the cloud-height-stratified DR retrievals (solid curves) from radiances simulated for the

training dataset for different cloud-height classes for (a) temperature, (b) humidity, and (c) relative humidity.
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or scattered cloud. The clear-trained regression is a

relation between the retrieval variables and the associ-

ated clear-sky radiance spectra. The cloud-trained

regression is a relation between the retrieval variables

and the associated cloudy-sky radiance spectra. Thus,

applying the clear-trained regression solution to cloud-

attenuated radiances will produce a temperature profile

that is colder below the cloud level than the true profile

by a degree dependent upon the altitude, temperature,

and optical depth of the cloud. In the ideal case, if the

cloud is opaque, the clear-trained temperature profile

retrieval should be correct above the cloud level and

isothermal below the cloud level with a temperature

value equal to the cloud-top temperature. On the other

hand, the cloud-trained regression retrieval from cloud-

attenuated radiances should produce a profile below the

cloud that is much closer to the true profile, the accuracy

being dependent on the height and optical thickness

of the cloud. In the case of an overcast opaque cloud,

the cloud-trained retrieval below the cloud is a pure

statistical extrapolation of the profile retrieved above

the cloud top, since there is no radiance information

from below the cloud to influence the retrieval. Under

cloudless-sky conditions, the clear-trained and the cloud-

trained retrievals should be nearly identical. Thus, the

difference between clear-trained and cloud-trained re-

trievals below the cloud is a measure of the expected

cloud-induced error in the cloud-trained retrieval below

the cloud. In the clear-sky case, and for the clear sky

above the cloud top, the clear-trained retrieval is ex-

pected to be slightly more accurate than the cloud-

trained retrieval because of the much smaller variance

of clear-sky radiances as compared with the cloudy-sky

radiances, affecting the regression-retrieval coefficients,

that is, matrix C as defined in (2). Figure 3 shows a

schematic of the DR retrieval process.

c. Statistical training datasets

The clear-trained regression relations are derived

using a training database consisting of 15 704 profiles of

temperature, moisture, and ozone at 101 pressure levels

for clear-sky conditions, as defined from the temper-

ature and humidity profiles (Borbas et al. 2005). The

profiles, distributed uniformly in both space and time,

are taken from the National Oceanic and Atmospheric

Administration (NOAA)-88 radiosonde dataset, a

European Centre for Medium-Range Weather Fore-

casts training set, the Thermodynamic Initial Guess

Retrieval (TIGR)-3 radiosonde dataset, and radio-

sondes from the Sahara desert. Ozonesondes were

taken from eight NOAA Climate Monitoring and Di-

agnostics Laboratory sites; quality checks were applied

to all of the profiles along with the following saturation

criterion: for clear-sky conditions, the relative humidity

value of the profiles must be less than 99% at each level

above 250-hPa pressure altitude level. In addition, it

was required that the original sounding top of pressure

be less than 30 hPa for radiosondes and 10 hPa for

FIG. 5. (Continued)
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ozonesondes. A technique to extend the temperature,

moisture, and ozone profiles into the upper atmosphere,

above the level of existing data, that produces results

that are physically consistent with atmospheric mea-

surements from below was implemented. Where ozone

data were not included with the original profiles, a time-

and location-independent temperature-profile predictor

regression-based algorithm was used for specifying the

ozone profiles. The regressions are expressed in terms of

level values, as opposed to layer averages, for the 101

fixed pressures. The surface pressure supplied by the

NCEP Global Forecast System (GFS) or by GDAS

(if GFS is not available) is used to determine the lowest

valid level of each retrieval.

The cloudy-sky training dataset consists of a total of

19 948 profiles, of which 11 979 profiles are cloudy

profiles and the remaining 7969 come from the clear set,

with cloud parameters assigned to all of the profiles as

described below. The relative humidity and temperature

were used to determine whether the profile was cloudy

or clear and to assign cloud-top pressure using a tech-

nique described by Minnis et al. (2005). Here, a relative

humidity threshold profile (Jin et al. 2006), in which the

threshold changed smoothly with altitude in the range

between 55% and 95%, was used to produce a relatively

uniform distribution of cloud-top altitude for the sta-

tistical ensemble of soundings that form the cloudy-sky

training dataset. For each cloud, a cloud optical thick-

ness ranging between 0.01 and 10 and an effective cloud-

particle diameter between 10 and 50 mm for ice crystals

and between 5 and 35 mm for water droplets were

assigned using a uniform-distribution random-number

generator. Ice clouds were assumed to be between

600 hPa and the tropopause, whereas water clouds were

assumed to be between 400 hPa and the surface, de-

pending on the temperature of the cloud. The cloudy

soundings were then assigned to eight different over-

lapping cloud-height classes: 100–300, 200–400, 300–500,

FIG. 6. Comparison of DR cloud heights (red and orange plus signs) and those obtained by

the old IMAPP algorithm (green plus signs) with those observed by the CALIOP lidar (blue

dots) for AIRS granules (top) 124 and (bottom) 187 for 28 Aug 2006. The background (black

shading) shows CloudSat’s L2 CPR Cloud Mask product.
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400–600, 500–700, 600–800, and 700–900 hPa and from

800 hPa to the surface. Thus, a mixture of cloud phases

is contained within the 400–600-hPa cloud-height class.

For the clear set of soundings, the surface skin tem-

perature was assigned using a relationship between the

surface skin temperature and air temperature derived

for the U.S. Department of Energy Oklahoma Atmo-

spheric Radiation Measurement Program Cloud and

Radiation Test Bed (ARM/CART) site (Borbas et al.

2005). For the cloudy set of data, the surface skin tem-

perature was assigned using the relationship Tskin 5 Tair 1

h(Tair), where h(Tair) is a random number with a mean of

0 and a standard deviation std dev 5 0.05(Tair 2 200) for

land and std dev 5 0.015(Tair 2 200) for water. The sur-

face emissivity was prescribed using a global land surface

spectral emissivity database (Seemann et al. 2008) and the

standard seawater emissivity spectrum (Wu and Smith

1997). Random variability of the assigned surface emis-

sivity spectrum was produced by multiplying the emis-

sivity spectrum by a random factor (1 1 f), where f is

a random number taken from a Gaussian random distri-

bution having a mean value of 0 and an std dev of 0.001.

The surface reflectivity was assigned from a uniform dis-

tribution of random numbers ranging between its specular

value of 1 2 the emissivity and its diffuse value of (1 2 the

emissivity)/p.

The CO2 concentration was treated as a variable

ranging between 360 and 400 ppmv. The retrieval

regression training datasets (clear and cloudy) have

been classified into five different CO2 categories. The

categories are defined by the annual mean values of five

4-yr overlapping periods, the years ranging from 2002 up

to 2013. The five overlapping datasets include CO2 con-

centration amounts corresponding to years 2002–05, 2004–

07, 2006–09, 2008–11, and 2010–13. For each year, the an-

nual mean values have been acquired online (ftp://ftp.

cmdl.noaa.gov/ccg/co2/trends/co2_annmean_gl.txt). For

the years not included in this list, values have been esti-

mated according to 370 1 2(year 2 2000). In the genera-

tion of the radiances for each of the five CO2 classifications,

the CO2 concentration has been randomly assigned using

the mean value for each of the four years within each

class, with a random perturbation added for which the std

dev of the perturbation is 4 ppmv. Thus, for each CO2

classification, the mean value for each of the four years

within the classification, plus its random perturbation, is

assigned to all of the atmospheric profiles within the

training dataset. In the retrieval step, the set of regression

coefficients associated with the radiance observation year

(i.e., 1, 2, 3, 4, and 5 for years 2002–04, 2005–06, 2007–08,

2009–10, and 2011–12, respectively) is used.

d. Radiative transfer calculations

Clear-sky-condition radiances are calculated using

the Stand-Alone AIRS Radiative Transfer Algorithm

(SARTA; Strow et al. 2003). Cloudy-sky radiances are

FIG. 7. Comparisons of bias (dashed curves) and std dev (solid curves) of differences between AIRS (left) temperature and (cen-

ter),(right) water vapor retrievals with radiosonde observations for December 2009 for the CONUS. Three retrieval types are shown:

original IMAPP (old) in blue, NASA operational version 5 (supV5) in black, and DR in red.
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calculated using SARTA for the molecular radiance

component combined with a fast cloud radiative transfer

model for ultraspectral IR sounder measurements that

was developed by Texas A&M and the University of

Wisconsin (Wei et al. 2004). For ice clouds, the bulk

single-scattering properties of ice crystals are derived

by assuming aggregates for large particles (.300 mm),

hexagonal geometries for moderate particles (50–

300 mm), and droxtals for small particles (0–50 mm)

(Yang et al. 2001, 2003). For water clouds, spherical

water droplets are assumed, and the classical Lorenz–

Mie theory is used to compute their single scattering

properties. In the model input, the cloud optical thick-

ness is specified in terms of its visible optical thickness at

0.55 mm. The IR cloud optical thickness for each spec-

tral channel can be derived through the relationship t 5

tvis(Qe/2), where t is the cloud optical thickness and

Qe is the bulk mean extinction efficiency. Given the

visible cloud optical thickness and the cloud-particle

diameter, the IR cloud optical thickness, the single-

scattering albedo, and the asymmetry factor can be ob-

tained from a prescribed parameterization of the bulk

radiative properties of ice clouds and water clouds. The

detailed parameterization scheme has been reported in

previous work (Wei et al. 2004). The cloudy radiance for

a given spectral channel can be computed by coupling

the clear-sky optical thickness and the cloud optical

effects. The cloud optical effects are accounted for

by using a precomputed lookup table of cloud reflec-

tance and transmittance on the basis of fundamental

radiative transfer principles. The clear-sky optical

thickness is derived using SARTA, which has 100

pressure layers (101 pressure levels), with vertical co-

ordinates from 0.005 to 1100 hPa. Both the clear-sky and

FIG. 8. Satellite imagery of hurricane Isabel (1710 UTC 13 Sep 2003): (a),(b) MODIS 1-km visible imagery (from http://modis.gsfc.

nasa.gov/), and AIRS (granules 171 and 172) DR-derived (c) cloud-height pressure and (d) cloud optical depth imagery.

1464 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 51



cloudy-sky radiance computations take into account the

satellite zenith angle, absorption by well-mixed gases

(including nitrogen dioxide, methane, silicon dioxide,

the chlorofluorocarbons, etc.), water vapor (including the

water vapor continuum), ozone, carbon dioxide, and car-

bon monoxide. Cloudy coefficients are computed for

11 scanning angles within the 08–508 range, 9 cloud classes,

and 5 CO2 classes. Clear coefficients are obtained for 6

brightness temperature (BT) classes (on the basis of the

BT in the window region around 910 cm21; Weisz et al.

2007a), 11 scanning angles, and 5 CO2 classes.

e. Final retrieval criteria

The following criteria are applied for producing the

‘‘final’’ combined clear-trained and cloud-trained retrieval:

1) The temperature-profile-defined cloud top is the

highest atmospheric level for which the difference

between the cloud-trained and the clear-trained re-

trievals differ by more than 3 K at all levels below

that level. The 3-K criterion was based on minimizing

the differences between the AIRS-derived cloud-top

heights and those observed within the AIRS field of

view by the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP) instrument (Winker et al.

2003).

2) If the maximum difference between the clear-trained

and cloud-trained retrieved surface skin tempera-

ture is less than 2.5 K, the clear-trained retrieval is

accepted as the final retrieval for all atmospheric

levels; otherwise, the clear-trained retrieval is ac-

cepted as the final retrieval above the cloud top and

the cloud-trained retrieval is accepted as the final

retrieval at and below the cloud-top level. Excep-

tions to this rule occur: (i) if the cloud-top pressure

is at or above the 300-hPa altitude, the cloud-trained

FIG. 9. Comparisons of (left) AIRS (granules 171 and 172; 13 Sep 2003) DR (top) temperature at 853-hPa and (bottom) relative

humidity at 707-hPa with the (center) final 1800 UTC operational analyses produced by NCEP’s GDAS. (right) The result of combining

the AIRS DR retrieval with the NCEP analyses.
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retrieval is accepted as the final retrieval for all

atmospheric levels above, at, and below the cloud-

top level, and (ii) if the maximum difference between

the clear-trained and cloud-trained temperature re-

trieval exceeds 25 K, the final retrieval below the

cloud top is set equal to missing.

3) A relative humidity–defined cloud top is defined as

the highest level above the 300-hPa level and above

the temperature-profile-defined cloud-top level at

which the cloud-trained retrieved relative humidity

is equal to, or exceeds, 70%.

f. Quality control

Quality control (QC) is exercised using a number of

criteria with the result summarized in a quality-control

flag. The quality flag contains three elements. The first

element can have a value of 0 or 1 corresponding to good

or bad radiances. If this value is 1 then no retrieval is

performed, that is, all of the parameters are set to fill

values. The second element is associated with partially

cloudy conditions. If cloudy retrievals below the cloud

top are available then a comparison with the NCEP

GDAS profile is performed. The criterion used is based

on the vertical mean difference and vertical std dev of

the difference between the retrieval and GDAS below

the cloud relative to that agreement above the cloud.

Value 0 refers to good agreement (i.e., a difference

below the cloud that is less than 1.5 times the difference

above the cloud), and value 1 refers to not-so-good

agreement (i.e., a difference below the cloud that is

greater than or equal to 1.5 times the agreement above

the cloud) with the NCEP GDAS. A fill value (29999) is

used if no comparison could be performed (i.e., under

clear conditions or opaque cloudy conditions). The third

element can assume values 0, 1, 2, or 3 on the basis of a

cloud-thickness delta ratio (ratio between the ‘‘retrieved

skin temperature minus GDAS skin temperature’’ and

the ‘‘retrieved temperature at cloud top minus GDAS

skin temperature’’). For ratio # 0.25, 0.25 , ratio # 0.5,

FIG. 10. As in Fig. 9, but for 300 hPa for both variables.
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0.5 , ratio # 0.75, or ratio . 0.75, the quality flags are

set to 0, 1, 2, or 3, respectively. Thus a value of 0 refers to

clear or thin cloud conditions, whereas a value of 3 refers

to thick clouds. It is left up to the user to decide whether

to apply any or all of these QC criteria depending on the

application of these profiles.

3. Comparison of DR and the original IMAPP
retrievals

Retrieval-error statistics were derived for the profile,

cloud, and surface conditions forming the training

dataset. To achieve these statistics, random radiance

errors were added to the radiances calculated from the

training dataset, and these radiances were used for the

retrieval without any other information regarding cloud

or surface condition being provided for the retrieval.

The retrievals were performed using both the original

unstratified-by-cloud-height regression method (Weisz

et al. 2007b) and the stratified-by-cloud-height DR method.

Figure 4 shows the results for the entire training

dataset including all clear and cloudy profile conditions,

without any QC. Retrievals obtained by the original

method were only considered for those levels for which

the DR method provided a valid profile result to en-

sure the comparisons between the original and the DR

with the training-dataset ‘‘truth’’ profiles are for exactly

the same atmospheric conditions. As can be seen, the

DR method of retrieval is significantly more accurate

than the original unstratified method, particularly for

the lower troposphere, where temperature and mixing-

ratio error reductions of more than 18 and 0.5 g kg21 are

achieved for temperature and water vapor mixing ratio,

respectively. One exception to this consistent improve-

ment appears in the bias error for the humidity of the

lower troposphere, although the std dev of the retrieval

error remain consistently better for the DR-retrieval

method. It is important to note that a ‘‘bias correction,’’

based on the difference between observed and calcu-

lated radiances and often applied by users of the satellite

radiance data, is not applied here. Note also that even

though Fig. 4a is based on the dependent dataset used to

derive the retrieval coefficients virtually the same results

are achieved when using an independent sets of data as

shown by comparisons of Fig. 4b with Fig. 4c. Here it is

shown that virtually identical retrieval-error statistics are

obtained for a small portion (25%) of the entire statistical

sample retrieved using both statistically independent and

dependent sample-based-retrieval coefficients.

Figures 5a–c show, respectively, the temperature,

humidity, and relative humidity root-mean-square error

(RMSE) statistics classified for the eight different cloud

FIG. 11. AIRS sounding retrievals from the eye of Hurricane Isabel (black curves) in comparison with the NCEP

GDAS analysis (red curves) for (left) DR temperature and (right) relative humidity.
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categories assumed for the DR retrieval. These statistics

should be considered as representative of ‘‘worst case’’

conditions since no QC has been used to filter out er-

roneous results. The classification is based on the re-

trieved, rather than the actual, cloud category so that

these error statistics could be used for the expected error

of the retrieved profiles as needed for combining them

with other sounding data within a data assimilation

system. As can be seen, the DR lower-tropospheric tem-

perature profile accuracy is significantly better than the

original retrieval accuracy for all cloud conditions, with

the improvements being as much as a factor of 2 (i.e.,

100%) for most cloud conditions. On the contrary, the

DR relative humidity accuracy improvements relative to

the original retrievals are confined to the upper tropo-

sphere above the cloud levels, indicating that below

clouds compensating errors in mixing ratio are associated

with the errors in temperature (i.e., values of saturation

mixing ratio). That is, below clouds if the original tem-

perature-profile-retrieval error is too high then a too-high

mixing-ratio-profile error results, causing the error from

the relative humidity profile to be largely unaffected. It is

seen that above cloud levels the accuracy of the DR rel-

ative humidity retrieval is much better than the original

retrieval accuracy, with the improvements being as much

a 100% (i.e., 20% in absolute value for DR relative hu-

midity errors near 20%, or less). Although the error

statistics for the retrievals that are based on simulated

radiances for the training dataset have little day-versus-

night or water-versus-land dependence (not shown here),

one expects real data-sounding retrievals to be somewhat

more accurate in the lower troposphere over water than

over land because of the much greater variability of the

land surface emissivity relative to ocean emissivity,

which must be accounted for in the regression retrieval.

Further analysis of real data-retrieval comparisons with

FIG. 12. Satellite imagery (from http://cimss.ssec.wisc.edu/goes/) associated with the Joplin tornado (22 May 2011): (a) MODIS 1-km

true-color visible imagery; (b) Geostationary Operational Environmental Satellite visible imagery; (c) an image of the tornado taken by

a ground observer, and AIRS (granule 197) DR-derived (d) cloud-height pressure and (e) cloud optical depth imagery.
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radiosondes (such as shown in Figs. 7 and 17, described

below) are needed to define the accuracy dependence on

surface type, geographical position, and season.

The DR method relies on being able to diagnose the

correct cloud altitude from the radiance spectrum. As

described earlier, there are two different cloud estimates

obtained with the DR method: the temperature-profile

cloud height, which works very well for all but relatively

transparent cloud conditions, and the cloud height from

the relative humidity profile, which enables the height

of relatively transparent clouds to be diagnosed. A

common occurrence is the existence of relatively trans-

parent cirrus cloud above a more opaque lower cloud.

The combination of the relative humidity cloud height

and the temperature-profile cloud retrievals enable

this common multilevel cloud-height condition to be

retrieved.

Figure 6 shows a comparison of the DR cloud heights

and observations from CALIOP on Cloud–Aerosol

Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) and the cloud-profiling radar (CPR) on

CloudSat for two different AIRS granules. Granule 124

(Fig. 6, top) and granule 187 (Fig. 6, bottom) represent

a polar case and a tropical case, respectively. Remember

that the field of view of the AIRS (15 km) is much larger

than that of the CALIOP (from 333 m to 5 km) and

CPR (1.4 km) so that an exact cloud-condition mea-

surement correspondence is not achievable. Also, it is

difficult to sense clouds with small optical thickness, as

can be detected by the CALIOP, using satellite infra-

red measurements (Holz et al. 2006). Nevertheless, it

is easily seen that the DR temperature-profile cloud

heights (red symbols) and the cloud heights from the

relative humidity profile (yellow symbols) are in general

agreement with the active lidar and radar observations.

Most important, it is seen that the DR cloud-height

retrievals are in much better agreement with the lidar

and radar observations than are the cloud heights de-

rived by the original (old) unstratified-by-cloud-height

regression method.

A comparison is also made between the DR re-

gression retrievals for all AIRS granules obtained

over the continental United States (CONUS) during

December of 2009. The ground truth used was radio-

sonde observations within 6111 km and 63 h of the

satellite observations. The number of comparisons used

to provide these statistics ranged from 100 to 200,

depending on atmospheric level. Because the AIRS

observations over the CONUS are nominally between

1900 and 2200 UTC, there are large time discrepancies

between the AIRS retrievals and the radiosonde ob-

servations, leading to the relatively large profile dis-

crepancies shown in Fig. 7, particularly in the surface

boundary layer where strong diurnal variations occur.

It is still useful to see how the new DR retrieval dis-

crepancies with radiosonde observations compare with

those between the original unstratified-regression re-

trieval method and those associated with the latest

available version of the NASA AIRS science-team

physical (supV5) retrievals (Susskind et al. 2011). As can

be seen, the DR temperature retrievals compare most

favorably to the radiosonde observations for temperature,

particularly for the lower troposphere. This result holds

for both the bias and std dev of the differences. For

relative humidity, the results are mixed, probably the

result of the compensation discussed earlier that takes

FIG. 13. (left) IASI and (right) AIRS data coverage for the 22 May 2011 Joplin tornado case study. Shown is the

derived surface skin temperature, which depicts all of the soundings that were retrieved down to the earth’s surface.

White areas denote the existence of dense cloud that limited the downward vertical extent of the sounding retrievals

to the cloud-top level.
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place between temperature and mixing-ratio errors

within any retrieval method to satisfy the radiance ob-

servations.

4. Applications to intense-weather situations

a. Hurricane Isabel

Hurricane Isabel (Fig. 8) was the costliest and dead-

liest hurricane in the 2003 Atlantic Ocean hurricane

season (http://www.nhc.noaa.gov/2003isabel.shtml). Isabel

formed near the Cape Verde Islands from a tropical

wave on 6 September 2003 in the tropical Atlantic Ocean.

It moved northwestward, and within an environment of

light wind shear and warm waters it steadily strength-

ened to a category-5 storm with winds that peaked at

165 mi h21 (265 km h21) on 11 September. Isabel

gradually weakened and made landfall on the Outer

Banks of North Carolina with winds of 105

mi h21 (165 km h21) on 18 September. The worst of the

effects of Isabel occurred in Virginia, especially in the

Hampton Roads area and along the shores of rivers as

far west and north as Richmond and Washington, D.C.

Virginia reported the most deaths and damage from

the hurricane. Throughout the path of Isabel, damage

totaled about $3.6 billion [in 2003 U.S. dollars (USD),

equivalent to $4.3 billion in 2011 USD]. Sixteen deaths

in seven U.S. states were directly related to the hurri-

cane, with 35 deaths in six states and one Canadian

province indirectly related to the hurricane.

The AIRS instrument overflew Hurricane Isabel, and

the radiance spectra obtained were used to test the

utility of the DR retrieval method for this severe-storm

situation. The results presented here are for AIRS gran-

ules 171 and 172 at 1710 UTC 13 September 2003. As can

be seen from Fig. 8, Isabel had a very well-defined ‘‘eye’’

FIG. 14. Example comparisons of (left) relative humidity at 850 hPa, (center) relative humidity at 700 hPa, and (right) temperature at

300 hPa for (top) AIRS DR retrievals, (middle) soundings at the AIRS sounding locations obtained from the final 1800 UTC operational

analyses produced by NCEP’s GDAS, and (bottom) the combined AIRS DR retrievals and NCEP analysis soundings. White streaks are

due to the larger geographical gaps between the AIRS sounding locations that occur near the edge of the scan lines.
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with extremely high cloud cover over the entire region

encompassing the storm, including a large cirrus outflow

region in which the optical depths of the cloud were rel-

atively small (i.e., ,15), thereby permitting many AIRS

soundings to be obtained down to near-surface altitudes

below the cirrus cloud cover.

Figure 9 shows example AIRS temperature and hu-

midity sounding retrievals (left-hand panels) for low al-

titudes (i.e., 1.5-km or 853-hPa temperature and 3.0-km

or 707-hPa relative humidity). Also shown are the 1800

UTC GDAS analyses (center panels) for the same var-

iables and the combination of the AIRS sounding

retrievals and the GDAS analysis (right-hand panels),

the GDAS being inserted where there is a void of AIRS

soundings. In principle, the AIRS sounding should be

assimilated, along with all other available data, into the

GDAS but satellite-sounding assimilation is not yet in

operational practice. The discontinuities resulting from

combining the 15-km-resolution AIRS soundings with

the 111-km-resolution GDAS soundings are alleviated

by performing a running 3 3 3 (i.e., ;50 km 3 50 km)

average of the combined profile dataset, producing the

result shown in Figs. 9 and 10. As can be seen, the DR

retrieval method enables a very large yield in sounding

retrievals beneath the cirrus outflow region and within

the eye of the storm. This result is significant for im-

proving the definition of the atmospheric thermodynamic

structure of the storm. This improvement can be seen by

comparing the combined (AIRS 1 GDAS) data analyses

with the GDAS-alone analyses. The combined analyses

reveal a much-more-intense hurricane (i.e., warmer eye)

with much-more-intense low-level water vapor gradients

beneath the cirrus outflow.

Figure 10 shows similar analyses for the 300-hPa level

of the atmosphere. It can be seen that for the upper

levels of the atmosphere the AIRS data reveal a much-

stronger eye, which is barely visible in the GDAS

analysis, and much-finer-scale water vapor structure that

is not captured in the lower-spatial-resolution (111 km)

GDAS analysis. The white areas are regions for which

the satellite-sounding vertical extent is limited by clouds

to an altitude above that shown. According to Nolan et al.

(2009), dropsonde data are available for 13 September

to compare with the AIRS retrievals, but this compar-

ison had not been performed by the time of writing of

this paper. These comparisons, combined with drop-

sonde comparisons with AIRS retrievals for a number

of other hurricanes within the 2003–11 time period,

will be performed and will be the subject of a future

publication.

Figure 11 shows a comparison between an AIRS eye

sounding and the GDAS analysis at the same location.

As can be seen the AIRS temperature within the eye

of Isabel is more than 15 K warmer than the GDAS

FIG. 15. IASI and AIRS DR derived relative humidity at (left) 850-hPa, (center) relative humidity at 700-hPa, and (right) temperature

at 500-hPa obtained using the GDAS 1800 UTC soundings to fill gaps in the satellite sounding data. Shown are (top) the IASI analyses

valid at 1540 UTC and (bottom) the AIRS analysis result valid at 1945 UTC, 4 h after the IASI data but 3 h before the tornado. The white

areas are due to the geographical gaps between IASI and AIRS sounding locations.
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analysis, indicating strong subsidence that is associated

with an intense storm. Also, the relative humidity re-

trieved in the eye of the storm is much more realistic,

given the known subsidence within the eye, than that

provided by the GDAS analyses. The high humidity in

the lower troposphere is associated with the low-level

cumulus that exists within the eye (see Fig. 8), and the

extensive mid–upper-tropospheric dry layer results from

the subsidence within the eye of the storm. The relative

humidity is also shown to be very high near the tropo-

pause over the eye because of the convergence of

moisture from the rainbands surrounding the eye. The

GDAS does not reveal these physically expected char-

acteristics of the hurricane because of its relatively poor

spatial resolution (;111 km) as well as the lack of

sounding data over the ocean influencing the GDAS

analyses. Note that AIRS radiance data were not yet

being assimilated into the GDAS during the time period

of Hurricane Isabel (Le Marshall et al. 2006).

In summary, one can see from the Isabel case study

that ultraspectral radiance observations provided by the

AIRS can be used to obtain the detailed tempera-

ture and moisture structure of the hurricane and its en-

vironment, which should lead to improved intensity and

track forecasts (Li and Liu 2009).

b. The Joplin tornado

A large portion of Joplin was devastated by an EF-5

(.200 mi h21; EF denotes the enhanced Fujita damage

scale) tornado, resulting in over 160 fatalities and over

900 injured in the Joplin area (http://en.wikipedia.org/

wiki/2011_Joplin_tornado) on 22 May 2011. The Joplin

tornado (Fig. 12) was the deadliest since modern re-

cordkeeping began in 1950 and is ranked eighth among

the deadliest tornadoes in U.S. history. The National

Weather Service issued a tornado warning at 1717 cen-

tral daylight time (CDT) 22 May 2011 for a geographical

region that included the city of Joplin. The tornado was

reported to have developed directly over Joplin, with

the first report of the tornado in Joplin at 1741 CDT

22 May 2011. Although the lead time on the tornado

warning was 24 min, this was insufficient time for many

people to react to the warning, which may also have been

ignored by many because of the fact that the specific

location of its formation (i.e., Joplin) could not be forecast

coupled with earlier ‘‘false alarms’’ (Brotzge et al. 2011).

The question arises as to whether the warning time

could be increased through the ‘‘warn on forecast’’ ap-

proach (Stensrud et al. 2009) by more timely observa-

tions of the atmospheric temperature and moisture

FIG. 16. (left) IASI and (right) AIRS DR-retrieved temperature (solid curves) and dewpoint (dashed curves)

profiles at Joplin on 22 May 2011. The IASI sounding was about 8 h prior to the tornado occurrence, and the AIRS

sounding was 4 h prior to the tornado occurrence.
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changes associated with tornado formation. On 22 May

2011, the MetOp IASI passed over the Joplin region at

1540 UTC. Four hours later, at 1945 UTC, the Aqua

AIRS passed over the Joplin region. Although the AIRS

observations were still 3 h before the formation of the

Joplin tornado, it is of interest to see what changes

in atmospheric thermodynamic stability took place be-

tween the IASI and AIRS overpass times.

Figures 12d and 12e show the cloud height and effec-

tive cloud optical thickness over the Joplin region as re-

trieved from the AIRS observations (granule 197). One

can see from Fig. 12 that there is good correspondence

between the cloud-height and optical-thickness retrievals

with the MODIS Aqua visible imagery. Low scattered-to-

broken cumulus clouds existed over Joplin, permitting

AIRS single-field-of-view soundings to be obtained down

to ground level in near–real time using the DR retrieval

method.

Figure 13 shows the surface skin temperature retrieved

from IASI (1540 UTC) and AIRS (1945 UTC) data for the

MetOp and Aqua data granules analyzed for the case

study. It serves to illustrate the locations of AIRS and IASI

soundings that reached the earth’s surface. The coverage

of retrieved soundings gets denser at higher altitudes, with

complete coverage being obtained above the highest cloud-

top altitudes. The geographical consistency between the

IASI- and AIRS-retrieved surface skin temperature for

common areas (e.g., the western Gulf of Mexico coast,

Oklahoma, Louisiana, Arkansas, and Missouri) is par-

ticularly noteworthy. A general warming of the earth’s

land surface is seen, as is expected between the 1540 UTC

(1040 CDT) and 1945 UTC (1440 CDT) overpass times

while the water temperature remains constant, indicating

good absolute calibration consistency between the IASI

and AIRS radiance measurements.

Figure 14 shows panels of AIRS-retrieved-sounding

values, the GDAS analyses, and GDAS plus AIRS data

analyses for the 850-, 700-, and 500-hPa levels. One

can see considerable disagreement between the GDAS

1800 UTC 700-hPa relative humidity and 500-hPa tem-

perature analyses and the actual 1945 UTC AIRS sounding

data. In particular, the AIRS data show drier and colder

(i.e., less stable) upper-level air to the north and west of

Joplin than do the GDAS analyses, which did not benefit

from these high-vertical-resolution satellite-sounding data.

Figure 15 shows time changes between 1540 and

1945 UTC from the IASI plus GDAS and AIRS plus

GDAS analyses. As can be seen, cold/dry air from the

west is being advected over a moistening boundary

layer at Joplin. This advection of cold, dry air together

with the moistening boundary layer over Joplin was

instrumental in making the atmosphere over Joplin

very unstable with respect to deep convection.

This decrease in the stability of the atmosphere over

Joplin is further illustrated in Figs. 16 and 17, which

show the changes in the vertical profiles of temperature

and dewpoint retrieved over Joplin from the IASI and

AIRS radiance measurements. One can see from Fig. 16

that the 1540 UTC IASI sounding provides evidence of

a capping inversion at the 850-hPa level, although the

entire column of air is relatively moist at the IASI

overpass time. At 1940 UTC, the AIRS sounding shows

the erosion of the capping inversion and the influence

of the strong advection of air above the 850-hPa level,

which is much drier than the air observed earlier at

the 1540 IASI overpass time. The validity of the DR-

sounding retrievals is established by comparison of the

AIRS sounding near Springfield, Missouri, about 75

miles east of Joplin, with a special radiosonde obser-

vation that was made at 1800 UTC at Springfield. The

comparison, shown in Fig. 17, indicates reasonable

FIG. 17. AIRS DR-retrieved temperature (black solid curves)

and dewpoint (black dashed curves) profiles near Springfield at

1940 UTC 22 May 2011 in comparison with a radiosonde obser-

vation (red curves) taken at 1800 UTC. Springfield is about 75 mi

(;120 km) east of Joplin.
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agreement considering the 2-h time difference between

the satellite and radiosonde observations.

Figure 18 shows the time change in atmospheric sta-

bility, in terms of the total totals (TT) index, between the

IASI 1540 UTC and AIRS 1945 UTC overpass times.

The TT index is defined as the difference between the

sum of the 850-hPa temperature and dewpoint temper-

ature and 2 times the 500-hPa temperature. Note the

large decrease in atmospheric stability (TT increasing

from values that are near 50 to values that are near 60),

which took place in the vicinity of Joplin between

the two satellite overpass times, whereas the stability

increased (TT decreasing to less than 50) at most other

surrounding locations. There unfortunately were no high-

vertical-resolution satellite sounding data between the

AIRS 1945 UTC sounding time and the occurrence of the

Joplin tornado at 2241 UTC (1741 CDT). Further de-

creases in atmospheric stability presumably took place,

but this decrease cannot be verified because of lack of

timely high-vertical-resolution sounding data (Schmit

et al. 2009). In any case, the precursor IASI and AIRS

sounding-stability diurnal changes prior to the Joplin

tornado certainly make a strong case for the need for a

geostationary-satellite ultraspectral sounder to better pre-

dict the location and timing of severe-weather development.

These observations would provide a much earlier warning

time than can be issued on the basis of radar and satellite

cloud imagery whose observations limit the warning time to

that interval after the time the clouds and precipitation as-

sociated with the severe weather have already developed.

5. Conclusions

The stratified-by-cloud-height dual-regression re-

trieval method can be used to produce useful soundings

and cloud and surface products in real time from sat-

ellite ultraspectral radiance data. The DR capability

to retrieve accurate soundings below thin and/or

scattered-to-broken cloud is shown to be particularly

important for providing the finescale atmospheric-

structure information needed to improve hurricane and

tornado storm forecasts for these example situations.

It is important to note that the motivation for the

DR approach is to enable the real-time production of

the desired physical variables (i.e., profiles, and surface

and cloud products) from the satellite ultraspectral-

resolution radiance measurements. A timing estimate

of the DR algorithm indicates that soundings can be

produced at a rate of approximately 25 soundings

per second on an Apple Mac Pro Quad-Core desktop

computer workstation. This rate compares favorably

with the 15-sounding-per-second acquisition rate for the

AIRS and IASI radiance spectra.

The retrieval algorithm described here is to be in-

tegrated into the CIMSS International MODIS/AIRS

Processing Package. The DR retrieval algorithm will

also form the basis for a new Joint Polar Satellite System

Processing Package, which can be used to process

MetOp IASI and NPP/JPSS CrIS data.

The results from the application of the method to

AIRS and IASI data for two significant intense-weather

cases (i.e., Hurricane Isabel and the Joplin tornado)

indicate a dramatic improvement in the mesoscale de-

tails of the meteorological analyses for both severe-

weather situations. Such improvements in analysis detail

should have a direct positive influence on forecast ac-

curacy. It is difficult to make such a general conclusion

on the basis of only two case-study results, however. The

widespread use of satellite-sounding retrievals that are

based on the method presented here should enable

FIG. 18. (left) IASI- and (right) AIRS-derived total totals stability index near Joplin. The white areas are regions

in which the satellite-sounding extent is limited by clouds to an altitude above the 850-hPa level used for the total

totals calculation.
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a general conclusion to be made regarding the im-

provement of forecast skill for intense-weather situa-

tions using satellite-ultraspectral-sounding data.
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