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Abstract

Future Satellite Imagers are expected to improve current ones on environmental and meteorological applications. In this study, an automatic
classification scheme using radiance measurements with a clustering method is applied in an attempt to compare the capability on cloud classification
by different sensors: AVHRR/3, the current GOES-12 Imager, SEVIRI, VIIRS, and ABI. TheMODIS cloud mask is used as the initial classification.
The results are analyzed with the help of true color and RGB composite images as well as other information about surface and cloud types. Results
indicate that the future sensors (ABI and VIIRS) provide much better overall cloud classification capabilities than their corresponding current sensors
(the current GOES-12 Imager and AVHRR/3) from the two chosen demonstration cases. However, for a specific class, it is not always true that more
spectral bands result in better classification. In order to optimally use the spectral information, it is necessary to determine which bands are more
sensitive for a specific class. Spatial resolution and the signal-to-noise ratio (SNR) of satellite sensors can significantly affect the classification. The
2.13 μm band could be useful for thin low cloud detection and the 3.7 μm band is useful for fresh snow detection.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Clouds play an important role in the earth–atmosphere sys-
tem. In general, clouds significantly affect the heat budget by
reflecting short-wave radiation (Hobbs & Deepak, 1981), and
absorbing and emitting long-wave radiation (Hunt, 1982). Dif-
ferent types of clouds have different radiative effects on the
earth–atmosphere system. The net effect is a function of the
cloud optical properties and the properties of the underlying
surface. For example, thin cirrus clouds over tropical waters
have little impact on solar radiation (Liou, 1986). However,
these clouds absorb long-wave radiation which increases the
greenhouse effect.

Cloud detection and classification is one important task for
meteorological satellites. Accurate and automatic cloud detec-
tion and classification is useful for many surface and atmo-
spheric applications. Studies (Vázquez-Cuervo et al., 2004)
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show that cloud contamination and aerosols are the two main
error sources (as large as 0.5K) for infrared (IR) satellite retrieval
of sea surface temperature (SST). Snow is difficult to be iden-
tified from low level clouds because both have large reflectance
in visible (VIS) bands and similar thermal properties in IR bands.
In order to discriminate snow cover from clouds using IR sat-
ellite measurements, cloud-filled and cloud-contaminated pixels
have to be identified (Allen et al., 1990). Classification infor-
mation, such as clear, single and/or multilayer cloud, from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
measurements within a single Atmospheric Infrared Sounder
(AIRS) footprint enhance the cloud clearing of AIRS radiances
(Li et al., 2004, 2005). Better understanding of the cloud clas-
sification improves the retrieval of cloud top pressure, optical
depth and effective radius (Frey et al., 1999; Li et al., 2001).

The simplest and probably most commonly used approach
applies a set of thresholds (both static and dynamic) of reflec-
tance, brightness temperature (BT) and brightness temperature
difference (BTD) (Ackerman et al., 1998). Spatial variances/
textures are also useful (Key, 1990). These methods are being
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Table 1
Initial classes from MODIS cloud mask

Class index Content

1 Confident clear water
2 Confident clear coastal
3 Confident clear desert or semiarid ecosystems
4 Confident clear land
5 Confident clear snow or ice
6 Shadow of cloud or other clear
7 Other confident clear
8 Cirrus detected by solar bands
9 Cirrus detected by infrared bands
10 High clouds detected by CO2 bands
11 High clouds detected by 6.7-mm band
12 High clouds detected by 1.38-mm band
13 High clouds detected by 3.7-and 12-mm bands
14 Other clouds or possible clouds
15 Others
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widely used on different imager sensors. They may fail when
two different classes have similar spectral signatures. This is
why the discrimination of low clouds from snow/ice is difficult
for threshold methods. These threshold methods were mainly
developed during the 1980s and early 1990s.

After that time, with improved computer speeds, many re-
searchers use statistical methods to conduct cloud classification
and detection. New methods, such as neural network (Key et al.,
1989), Bayesian methods (Uddstrom et al., 1999), clustering
analysis or maximum likelihood (Li et al., 2003), and fuzzy
logic (Baum et al., 1997), have provided impressive results for
cloud detection and classification. The statistical methods are
supposed to be superior to the traditional threshold methods in
two aspects. The former could digest more information than the
latter one. For a single class, the latter uses a couple of (usually
2 to 3) bands, which are significantly sensitive to this class;
while the former could use all the available bands and thus
extract more useful information. Secondly, when the overlap
between two classes is significant, the statistical method could
optimally separate the separable parts better than the threshold
methods. However, there are some short-comings in statistical
methods, which limit their performance and prevent them from
being used globally. For example, the neural network approach
needs training sets which are region-based and Bayesian
methods need information on the distribution of the data,
which is now assumed to be a normal distribution while the
actual data distribution may vary regionally. In contrast, the
threshold methods are not affected by location and the dis-
tribution of the data, which makes them suitable for global use.
This could also explain why they are still widely used.

Operational imagers on both polar orbiting and geostationary
satellites monitor changes in the environment and cloud con-
ditions. For example, the Advanced Very High Resolution Ra-
diometer (AVHRR/3) is a 6-band imager on National Oceanic
and Atmospheric Administration (NOAA) satellites and
provides global cloud observations operationally (see http://
www2.ncdc.noaa.gov/docs/klm/htclustering/c3/sec3-1.htm),
while the current Geostationary Operational Environmental
Satellite (GOES)-12 Imager provides hemispheric cloud
observations every 25 min (Schmit et al., 2001). The future
advanced Visible Infrared Imager/Radiometer Suite (VIIRS)
will replace AVHRR/3 on the National Polar Orbiting Envi-
ronmental Satellite System (NPOESS), while the Advanced
Baseline Imager (ABI) (Schmit et al., 2005) on the next
generation of GOES-R series will replace the current GOES
Imagers (Schmit et al., 2001) for operational applications. One
important question is how these advanced imagers (VIIRS and
ABI) might improve the operational products over the current
imagers (AVHRR/3 and the current GOES-12 Imager). In this
study, we will focus on the capabilities on cloud classification
by different imager sensors.

To simulate the capabilities of various imagers (current and
future) on cloud detection and classification, the clustering
algorithm with MODIS data is used in the study. The same
method was used for MODIS cloud classification by Li et al.
(2003). Instead of demonstrating the capability of MODIS on
cloud classification with the clustering algorithm, this paper is
focused on comparing the capability among different imager
sensors with MODIS clustering classification as a standard.
Similar to the statistical methods mentioned earlier, the clus-
tering algorithm has its own shortcoming. This method highly
depends on the initialization. However, this shortcoming does
not prevent it from global use in this study because the MODIS
cloud mask (Ackerman et al., 1998) provides a perfect initial
classification for the clustering method. As described in Li et al.
(2003), there are a total of 15 classes in the MODIS cloud mask
(Table 1).

Section 2 introduces the data and the different imagers.
Section 3 provides a brief description of the clustering algo-
rithm. In Section 4, the capability of MODIS for cloud/surface
classification is demonstrated and two cases are used to com-
pare the different imagers. Discussions are given in Section 5,
and the summary is presented in Section 6.

2. Data

2.1. MODIS data

Three types of data are used in the MODIS cloud clas-
sification. Radiances provide the primary information for sur-
face and cloud type classification. In some situations, variance
or texture images (Coakley & Bretherton, 1982; Uddstrom &
Gray, 1996) and BTD are also useful for classifying the cloud
and surface types (Liu et al., 2004). Table 2 shows all the data
used in the MODIS clustering classification (the third column).
The ocean color bands are not included in this study. LSD
stands for local standard deviation, also known as the variance
or texture images, and is defined as

LSDði; jÞ ¼
X1

m;n¼−1
ðxðiþ m; jþ nÞ− x̄ Þ2

" #1=2

where x is the radiance, x̄ is the mean of a 3 by 3 field-of-view
(FOV) area, and i j are the pixel index of the ith line and jth
column. In Li et al. (2003), LSD is calculated from a 4 by 4
FOVarea for bands 1–2, a 2 by 2 FOVarea for bands 3–7, and a
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Table 2
Data used in MODIS and other sensors clustering classification

Data λ⁎ MODIS ABI AVHRR/3 GOES SEVIRI VIIRS Primary use

Band1 659 Y Y Y Y Y Y Clouds, shadow
LSD-1⁎⁎ Y Y Y Y Y Y Cirrus, low clouds, surface
Band2 865 Y Y Y Y Y Low clouds
LSD-2 Y Y Y Y Y Cirrus, low clouds, surface
Band3 470 Y Y
LSD-3 Y
Band4 555 Y Y Snow
LSD-4 Y Y
Band5 1240 Y Y Snow
LSD-5 Y Y Clouds, snow, surface
Band6 1640 Y Y Y Y Y Snow, shadow
LSD-6 Y Y Y Y Y Clouds, snow, surface
Band7 2130 Y Y Y
LSD-7 Y Y Y
Band17 905 Y
Band18 936 Y Low clouds
Band19 940 Y Shadow
Band20 3750 Y Y Y Shadow
Band22 3959 Y Y Y Y
Band23 4050 Y Y
Band24 4465 Y
Band25 4515 Y
Band26 1375 Y Y Y
Band27 6715 Y Y Y Y
Band28 7325 Y Y Y
Band29 8550 Y Y Y Y
Band31 11,030 Y Y Y Y Y Y Clouds, surface
LSD-31 Y Y Y Y Y Y
Band32 12,020 Y Y Y Y Y Y Clouds, surface
LSD-32 Y Y Y Y Y Y
Band33 13,335 Y Y Y Y
Band34 13,635 Y
Band35 13,935 Y High clouds
NDVI Y Y Y Y Y Vegetation
NDSI Y Y Snow
BT11–12 Y Y Y Y Y Y
BT8.6–11 Y Y Y Y Clouds
BT11–6.7 Y Y Y Y Clouds
BT3.9–3.7 Y
BT11–3.7 Y Y Y Clouds
BT12–4 Y Y
BT13.7–14 Y
BT11–3.9 Y Y Y Y
Number of parameters 24 13 6 6 11 12

⁎λ is the center wavelength with unit of nm.
⁎⁎LSD stands for local standard deviation. Also known as variance or texture images.
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3 by 3 FOV area for bands 31–32. In this paper, a 3 by 3 FOV
area is used for all bands in LSD calculations.

2.2. Other imager sensors

MODIS has 36 spectral bands with 250 m to 1000 m spatial
resolutions, many more spectral bands and much higher spatial
resolution than other meteorological satellite imagers. Thus,
MODIS data with the clustering algorithm can be used to
simulate other imager sensors to compare their spectral and
spatial capabilities on cloud/surface classification. This paper
is focused on spectral capabilities on cloud classification by
different imager sensors. For example, to simulate AVHRR/3
cloud/surface classification capabilities, MODIS bands 1, 2, 6,
20, 31 and 32 can be used. However, not all the available bands
of each sensor will be used for clustering. For those bands that
MODIS does not have (i.e. ABI band 6, 2.26 μm), a close band,
with the similar spectral characteristics, is used as a substitute
(here MODIS 2.13 μm). If no such a substitute can be found,
then the band will not be used for that sensor. Although spatial
resolution has important effects on classification, we will not
touch this discussion until Section 5. Therefore, the resolution is
approximately 1 km for all imagers in the simulation, which is
the same as for MODIS.

2.2.1. ABI
The ABI will be the imager onboard the next generation

GOES-R, which is scheduled to be launched in 2014 (Gurka &
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Dittberner, 2001). Compared with the current GOES Imager,
ABI will have more spectral bands, higher spatial resolution,
and faster imaging capability (Schmit et al., 2005). These im-
provements offer much wider use on qualitative and quan-
titative weather, oceanographic, climate, and environmental
applications. How the ABI will improve the current GOES class
Imager (e.g., GOES-12 Imager) on cloud classification will be
investigated. Of the 16 bands on the ABI, 13 are available from
MODIS to be used in the clustering classification.

2.2.2. AVHRR/3
The AVHRR/3 is a six-band imaging radiometer, onboard

NOAA-15, 16, 17 and 18 since 1998, with a spatial resolution
of 1.1 km (see http://www2.ncdc.noaa.gov/%20docs/klm/
htclustering/c3/sec3-1.htm). Compared with the previous
AVHRR, a new band at 1.6 μm is designed to discriminate
snow/ice from water clouds. AVHRR has been successfully
used for cloud classification for a long time (Baum et al., 1997;
Key et al., 1989). A lot of different methods have been de-
veloped. And many methods developed for AVHRR are now
being used for other newer sensors, like MODIS and VIIRS. In
this study, the AVHRR is mainly compared with VIIRS to
examine how the future polar orbiting sensor will improve the
current one on cloud classification.

2.2.3. The current GOES-12 imager
The current GOES class (e.g., GOES-12) Imager has a five-

band multi-spectral capability on GOES 8–13 (Menzel &
Purdom, 1994) with a different band available on GOES-12 and
GOES-13 (Schmit et al., 2001). Unlike sensors on the polar
orbiting satellites, one big advantage of the current GOES-12
Imager is its high temporal resolution which makes it suitable
for short-range meteorological applications. However, lacking
of near IR (NIR) bands and having only one VIS band limit
its applications. The current GOES-12 Imager is included in
this study to compare with ABI to demonstrate how the future
geostationary imager could improve the current one. For
maximum performance, all six bands are used to represent the
current GOES-12 Imager.

2.2.4. SEVIRI
The Meteosat Second Generation (MSG) is a new series of

European geostationary meteorological satellites (first satellite
called MET-8) developed through a cooperation programme of
European Space Agency (ESA) and the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT).
The main instrument on board is the Spinning Enhanced Visible
and Infrared Imager (SEVIRI), a 12-band radiometer providing
images of the Earth disc with cloud and surface information
(Schmetz et al., 2002). SEVIRI is a more advanced instrument
than the current GOES Imager and AVHRR/3, but not as ad-
vanced as ABI and VIIRS (see Table 2 for the number of
parameters used in the clustering algorithm for different
sensors). This sensor is included in this study in order to com-
pare the capability on classification between SEVIRI and the
current/future imagers. Among the 12 bands, 11 are available
from MODIS for clustering classification.
2.2.5. VIIRS
The planned VIIRS, a 22-band multi-spectral scanning ra-

diometer, will replace AVHRR/3 onboard the NPOESS
Preparatory Project (NPP) satellite in 2009, and will fly on
NPOESS satellites (Lee et al., 2006). Besides the facts of more
spectral bands, higher spatial resolution, better SNR and faster
data acquisition, the cross track pixel expansion of VIIRS is
greatly limited. Unlike MODIS and AVHRR, a unique ag-
gregation method is used to prohibit the cross track pixel ex-
pansion. In such a way, pixels along throughout the whole
swath are nearly square. This ensures the pixels at the edge of
swath have useful spatial resolution. All of the improvements
here offer VIIRS more chances to have better performance than
AVHRR. 12 bands from MODIS are used for VIIRS cloud and
surface clustering classification.

Table 2 shows the data used by each sensor for cloud/surface
classification in this study.

3. Clustering classification algorithm

The clustering algorithm used in this study is the same as that
in Li et al. (2003). Instead of re-describing the details of the
algorithm, the main steps in the algorithm are described here:

(1) Based on MODIS cloud mask product, the mean vectors
and covariance matrices of different classes are calculated.

(2) Iteration over all pixels to calculate the distances between
the pixel and mean vectors of different classes.

(3) Assign the pixel to the nearest class.
(4) Update the mean vectors and covariance matrix.
(5) Go back to step 2 until convergence criteria are met.

4. Results

Two cases are shown here to compare these sensors' capa-
bilities on cloud classification. The main reason for limiting the
number of cases to two is that they are two typical challenging
cases for classification. There are also some other challenging
cases (i.e. dark and cold situations with near-surface thermal
inversions and twilight situations). The authors are not going to
make the general conclusions based on the two cases, but
provide a way to compare and analyze the capabilities of dif-
ferent imager sensors. For both cases, two parts are provided. In
the first part, interpretation of MODIS clustering classification,
a detailed description of how the MODIS clustering classifica-
tion is obtained is presented. In the second part, classification by
different sensors, the MODIS clustering classification is used as
a standard, and the clustering classifications by other sensors are
compared with the MODIS clustering classification.

In this section, several different terminologies need to be
clarified in advance. MODIS cloud mask is one of the oper-
ational MODIS products. It provides the cloud and surface
classification information and is used as the initialization for the
clustering algorithm. MODIS clustering classification is the
output of the clustering algorithm using MODIS cloud mask as
initialization. And it is used as the standard to compare with the
classification results from other imager sensors. For example,
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ABI clustering classification is the output of the clustering
algorithm for ABI using MODIS cloud mask as initialization,
and is compared with MODIS clustering classification (truth)
for the classification performance evaluation.

4.1. Case 1: high latitude case

Cloud/surface classification in high latitude areas during the
winter is challenging because of the high reflectance of surface
that is often covered by snow (Allen et al., 1990). For this case
we have chosen a MODIS granule at 18:55 UTC on 4 February
2004. The capability of the MODIS clustering classification is
first demonstrated and then the MODIS clustering classification
is used as “truth” to evaluate the capabilities of other sensors.
As mentioned previously, the MODIS cloud mask is used to
initialize the clustering algorithm.

4.1.1. Interpretation of MODIS clustering classification
Fig. 1(a) (b) and (d) show a Red-Green-Blue (RGB) com-

posite image (0.65 μm, 2.13 μm and the inverse of the 11 μm),
the MODIS cloud mask image, and the MODIS clustering
classification image, respectively. There are 8 classes in the
MODIS cloud mask image (Fig. 1(b)). It is not necessary to
know what the 8 classes exactly are for two reasons. One is that
some of the initial classifications are not correct (as will be
Fig. 1. (a) RGB composite image (0.65 μm, 2.13 μm and 11 μm flipped); (b) MODI
18:55 UTC February 4, 2004. The two arrows show the two regions where MODIS
shown later). The other reason is that we will redefine each class
after the MODIS clustering algorithm. Actually, one may not
predict what a class will be until the clustering method was
performed because the final classification interpretation is
highly depends on the initial classification. A cloud class will be
reclassified as high clouds if it is much closer to high clouds
than other class, and it will be reclassified as middle clouds if it
is much closer to middle clouds than the others. Thus, the
MODIS cloud mask product was used only for starting clusters
and the actual labeling of the final clusters was done by inter-
preting the imagery thereby creating a different classification
from the original MODIS cloud mask.

In this case, the MODIS clustering classification has a sim-
ilar pattern to the MODIS cloud mask. With the help of the RGB
composite image and the physical analysis of radiance, BTD
and variance, it is possible to redefine each class.

There are 5 types of clouds in the MODIS clustering clas-
sification. The high clouds/ice clouds class is verified because it
has very cold BT (average 233.39 K) in band 31 (see Table 3 for
mean values for each class at the different bands). Low clouds
have relatively high reflectance in VIS/NIR bands and high BT
in band 31. Also BT11–BT12 has a greater value than BT8.6–
BT11, which indicates low clouds (Strabala et al., 1994). Middle
level clouds have spectral characteristics between high clouds
and low clouds. They are brighter and colder than low clouds,
S cloud mask; (c) Laplace of BT11; (d) MODIS clustering classification for case
cloud mask fails to detect as fresh snow.



Table 3
Mean values for different classes at different bands

λ Water t.low⁎ o.snow⁎ f.snow⁎ Low High Middle Other

Band1 659 2.14 4.9 6.89 16.85 18.38 31.72 23.2 14.14
LSD-1 0.46 2.58 1.87 2.17 1.93 0.79 1.08 2.08
Band2 865 1.09 6.23 10.85 19.49 21.07 34.76 25.67 17.36
LSD-2 0.45 2.68 1.96 2.19 2.21 0.9 1.2 2.26
Band3 470 6.46 8.94 10.16 19.18 21.4 34.08 25.79 17.27
LSD-3 0.39 2.11 1.53 1.8 1.52 0.71 0.9 1.65
Band4 555 3.57 6.16 7.76 16.82 18.52 30.95 22.94 14.48
LSD-4 0.43 2.31 1.68 1.95 1.7 0.72 0.97 1.84
Band5 1240 0.51 4.35 7.78 11.17 15.53 27.27 18.93 11.99
LSD-5 0.3 1.53 1.16 1.2 1.73 0.87 0.95 1.44
Band7 2130 0.26 1.09 1.91 1.63 7.11 9.77 8.01 3.87
LSD-7 0.23 0.41 0.4 0.18 1.16 0.5 0.55 0.71
Band17 905 0.88 5.5 9.71 16.65 18.27 31.14 22.3 14.81
Band18 936 0.64 3.63 6.43 10.22 11.39 23.36 14.65 8.66
Band19 940 0.71 4.37 7.78 12.75 14.12 26.32 17.61 11.07
Band20 3750 273.06 267.34 264.31 259.02 276.84 266.19 272.24 269.65
Band22 3959 271.97 265.56 261.98 257.2 267.56 252.41 263.09 264.41
Band23 4050 269.42 263.12 259.58 256.08 261.45 247.4 257.73 260.19
Band24 4465 233.49 231.88 231.22 229.56 230.62 226.9 228.8 230.13
Band25 4515 249.86 245.92 243.89 241.1 242.12 230.08 239.55 242.47
Band26 1375 0.13 0.28 0.4 0.44 0.87 10.02 2.93 0.33
Band27 6715 242.14 240.23 239.88 238.32 238.24 225.29 233.06 238.5
Band28 7325 253.96 250.81 249.34 247.39 247.72 230.07 242.25 247.94
Band29 8550 270.81 263.71 259.62 256.04 256.45 234.93 249.47 258.62
Band31 11,030 272.11 264.48 260 256.19 257.05 233.39 249.15 259.26
LSD-31 0.28 0.65 0.31 0.36 0.68 1.1 0.72 0.41
Band32 12,020 271.49 264.17 260.03 256.05 256.71 232.66 248.6 259.13
LSD-32 0.34 0.72 0.36 0.4 0.72 1.12 0.75 0.48
Band33 13,335 254.86 250.83 248.83 246.3 245.91 228.42 241.53 247.4
Band34 13,635 244.08 241.51 240.38 239.09 238.06 225.37 234.79 238.81
Band35 13,935 236.95 235.08 234.29 233.2 232.51 223.23 229.39 232.77
NDVI − 53.09 −6.14 32.79 12.99 10.99 7.48 8.31 15.58
NDSI 132.98 113.52 92.64 122.28 72.7 78.28 76.95 93.47
BT11–12 0.63 0.31 −0.03 0.13 0.36 0.74 0.55 0.13
BT8.6–11 −1.3 −0.77 −0.37 −0.16 −0.59 1.54 0.19 −0.65
BT11–6.7 29.97 24.25 20.12 18.39 18.36 8.06 15.67 20.78
BT3.9–3.7 −1.09 −1.78 −2.33 −2.11 −9.31 −13.77 −9.84 −5.26
BT11–3.7 −0.95 −2.86 −4.32 −3.8 −20.05 −32.8 −22.93 −10.37
BT12–4 2.07 1.06 0.45 −0.16 −4.91 −14.75 −8.34 −1.05
BT13.7–14 7.12 6.43 6.09 5.87 5.61 2.06 4.64 5.89
BT11–3.9 0.15 −1.08 −1.99 −1.69 −10.73 −19.03 −13.1 −5.1

For bands 1–19 and band 26, the values are reflectance times 100. Others are brightness temperature (K).
⁎t.low represents thin low clouds.
⁎o.snow represents old snow.
⁎f.snow represents fresh snow.
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and darker and warmer than high clouds; variances of VIS/NIR
bands are larger than high clouds and less than low clouds;
variances of BT11 are larger than low clouds and less than high
clouds. This is actually a mixture of pixels overcast by spatially
homogeneous and thick middle level clouds (over west Hudson
Bay) and pixels partially covered by thin middle level clouds
(over east Hudson Bay). Fig. 1(c) is the second order derivative
(Laplace) of 11 μm. The figure is enhanced in order to better
show the intermediate values. The small values in the Laplace
of 11 μm over west Hudson Bay indicate thick and spatially
homogeneous clouds, while the relative large values over east
Hudson Bay indicate thin and inhomogeneous clouds. The
fourth class of clouds is thin low clouds (“t.low” in Table 3).
The class is labeled thin low clouds because of a low reflectance
in the VIS/NIR bands, very high BT11 and it is verified by the
fact that a large part of this class is over Lake Superior, which
indicates that it is not snow. Also it does not show the
characteristics of ice clouds. The “other” class is mixed surface
type, or other clouds. Some of them are clouds (areas between
Lake Michigan and Lake Huron), some of them are ice (west of
Lake Superior), and some of them are snow (Green Bay).
However, this class contains only a small percentage of the total
pixels in the scene.

There are three classes for clear scenes. The class of water is
the easiest to verify, as can be seen from the RGB composite
image (Fig. 1(a)). One of the big advantages of the RGB
composite image using these bands is that both fresh snow
(“f.snow” in Table 3) and old snow (“o.snow” in Table 3) are
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easily discriminated from low and middle level clouds. These
clouds are shown in yellow while the fresh snow is light red and
old snow is inhomogeneous and looks like bare surface. Fig. 2 is
the snow and ice cover map fromNOAA (see http://www.nohrsc.
nws.gov/index.htclustering). The red rectangle shows the area
of this MODIS scene. It is clear that the whole MODIS scene is
covered by snow. In Fig. 1(d), the fresh snow and the old snow
are distinguished by the fact that the fresh snow has a higher
reflectance (0.17 of band 1) than the old snow (0.07 of band 1),
and a slightly lower surface temperature (BT11), with a dif-
ference of approximately 4 K (260 K for o.snow and 256.2 K for
f.snow; see Table 3). This difference is mainly caused by the
different reflectance in solar radiation.

Although the MODIS cloud mask has the same pattern as the
MODIS clustering classification, there are improvements in the
clustering classification algorithm. For example, the clustering
classification discriminates fresh snow from old snow, espe-
cially two misclassified areas, located at (110 °W, 52.5°N) and
(108°W, 51°N). These two areas are labeled by red arrows in
Fig. 1(d). Also the classification of clouds has been improved.

However, there is one type of cloud that is not detected: thin
cirrus. In this case, there are some thin cirrus clouds over Lake
Michigan, but they are too thin to be classified by the clustering
algorithm. Even in the BT11 image (not shown), it is not so
evident, but it is recognizable in the R1.38 image. The reason
why this happens will be given in the next sub-section.

Another method to verify the MODIS clustering classifica-
tion is to compare results with a GOES VIS/NIR/IR animation
(see http://angler.larc.nasa.gov/armsgp/). Both visible (during
daytime) and IR bands show the movement of clouds and the
clear surface that is covered with snow.

4.1.2. Classification by different sensors
Fig. 3 shows the results of clustering classification for the

different imagers. For each sensor, there are two figures to
interpret the results. The left panels are the clustering classi-
fication images, while the right panels are the classification
matrices C(i, j) between the results by this sensor and MODIS,
which indicates the percentages of pixels of the ith class of
Fig. 2. Snow and ice map from NOAA. The rectangle area is the MODIS granule
coverage.
MODIS clustering classification assigned to the jth class of the
current sensor's classification. For example, C(14, 4)=6.5%
(shown with an arrow in Fig. 3(b)) means that 6.5% of “other”
in the MODIS clustering classification is changed to the class of
“old snow” in the ABI clustering classification. Thus, larger
values in diagonal elements indicate better results (more similar
to the MODIS clustering classification; off-diagonal elements
represent where the simulated sensors disagree with MODIS).
Obviously, the percentage for each class in the MODIS
clustering classification is 100%, or

P15
i¼1 Cði; jÞ ¼ 100%.

Generally, all the sensors produce similar patterns of clas-
sification except the current GOES-12 Imager, which mis-
classifies some middle-level clouds as clear. This is because
there is only one VIS/NIR band in the current GOES-12 Imager.
The current GOES-12 Imager also has problems in detecting
thin low clouds and old snow. However, for each class, there are
some differences among the sensors.

Table 4 shows the diagonal elements C(i, i) of the clas-
sification matrix for each sensor. For example, the diagonal
value of low clouds for the current GOES-12 Imager is 88.6%,
which means 88.6% of low clouds in the MODIS clustering
classification are retained in the current GOES-12 Imager
classification. The larger diagonal value corresponds the better
(e.g., more MODIS-like) the classification for the sensor. Here,
a diagonal value over 90% is regarded as excellent performance,
80%–90% as good performance, 70%–80% as acceptable per-
formance and below 70% as poor performance. We define
significance of likelihood (SL) as the mean of the diagonal
elements of the matrix, SL=E(C(i, i)). This value can be used to
quantitatively compare the capabilities of different sensors. The
“mean” in the table is the mean value of the column.

First we will focus on the ease of detecting each class using
Table 4. As expected, the class of water has the highest mean
value, which means all the sensors have high capabilities to
detect the open water. This is reasonable since open water is
very homogeneous for almost all the bands. Low clouds are the
second easiest to detect. They have a mean diagonal value of
94.4%, which indicates the classification of low clouds is very
reliable for all five sensors. High clouds also have a good
reliability. ABI, SEVIRI and VIIRS have diagonal values above
91.3%. Although AVHRR/3 and the current GOES-12 Imager
have relatively low values (just more than 80%), the pattern is
almost the same, as can be seen in Fig. 3. The main difference
comes from the boundary between high clouds and middle
clouds. The middle level clouds are between the high and low
clouds on the vertical in the atmosphere, and thus they are
usually mixed phase. This fact explains why the middle level
clouds are more difficult to detect than the high and low level
clouds (smaller diagonal values than the high and low clouds).
In this case, the detection is even more difficult because some of
the middle level clouds are thick and homogeneous clouds and
some are thin and inhomogeneous clouds. For snow and thin
low clouds, not all the sensors have acceptable results. ABI,
SEVIRI and VIIRS are always better than average, while the
GOES-12 Imager is far below average. From Table 4, the ease
for detecting the classes is waterN lowNhighNmiddleN thin
lowN fresh snowNold snow.

http://www.nohrsc.nws.gov/index.htclustering
http://www.nohrsc.nws.gov/index.htclustering
http://angler.larc.nasa.gov/armsgp/


Fig. 3. Classification by different sensors (left column) and corresponding classification matrices (right column) for case 18:55 UTC February 4, 2004. From top to
bottom: ABI, AVHRR/3, the current GOES-12 Imager, SEVIRI, VIIRS. Off diagonal elements in classification matrices represents where the simulated sensors
disagree with MODIS.
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Table 4
Diagonal values of classification matrices for different sensors, 18:55 UTC
February 4, 2004

Water t.low o.snow f.snow Low High Middle Other SL

ABI 97.4 93.7 88.6 91.7 96.3 94.8 90.2 84.6 92.2
AVHRR/3 94.8 87.1 92.4 85.9 93.3 83.2 88.6 80.0 88.2
GOES 98.5 49.0 32.9 53.4 88.6 81.9 70.9 16.8 61.5
SEVIRI 97.4 90.0 74.4 86.3 95.5 92.7 85.5 89.9 89.0
VIIRS 96.7 93.9 92.6 87.2 98.5 91.3 86.6 84.3 91.4
Mean 97.0 82.7 76.2 80.9 94.4 88.8 84.4 71.1

Over 90% represents excellent performance. 80%–90% represents good
performance. 70%–80% represents acceptable performance. Below 70%
represents bad performance.
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There are two methods to compare the sensors' capabilities.
One compares the overall capabilities of the imagers using SL.
A larger SL value indicates better overall capability. The
other method compares the sensors' capabilities on different
classes. This comparison is based on the diagonal values of the
classification matrices.

From Fig. 3 and Table 4, for the overall performance of the
imagers, it is clear that the more spectral bands, the better the
results. Since future sensors have more bands than current
sensors, they are expected to have better results than current
ones. ABI has 13 spectral parameters used in the clustering
classification and it has an excellent performance with an SL of
92.2%, the best of all. In contrast, the current GOES-12 Imager
has only 6 spectral parameters, and its performance is poor
with an SL of 61.5%, the worst of all. VIIRS has 12 spectral
parameters while AVHRR/3 has 6. As a result, VIIRS has an SL
of 91.4%, larger than the AVHRR/3 SL value of 88.2%. SEVIRI
has 11 spectral parameters. It has an SL value larger than the
current GOES-12 Imager and AVHRR/3 while smaller than
ABI and VIIRS.

These results are reasonable because more bands provide
more information, both on the surface and clouds. Table 2 (last
column) shows the information of primary usage for different
bands. Since the current GOES-12 Imager only has 1 VIS/NIR
band, it cannot discriminate snow from clouds and fresh snow
from old snow very well; it is also difficult to identify thin low
clouds. A comparison between VIIRS and AVHRR/3 is inter-
esting because AVHRR/3 has more impressive results than
expected. For most classes, AVHRR/3 has only slightly smaller
diagonal values than VIIRS (Table 4). In particular, for both
fresh and old snow, they are almost same; 92.4% and 85.9% for
AVHRR/3 while 92.6% and 87.2% for VIIRS. For middle level
clouds, AVHRR/3 has a larger value than VIIRS. It seems that
AVHRR/3 has almost the same information on surface and
clouds that VIIRS has. However, this might not be true because
AVHRR/3 cannot provide spectral information with the same
radiometric precision as VIIRS. We will leave this explanation
for the Discussion section.

However, these results are valid only for the sensors' overall
performance. If the comparison is based on a specific class,
this might not always be true. For a specific class, we cannot
guarantee ABI has better classification results than the VIIRS.
From Table 4, both sensors have some maximum diagonal
values. This indicates each of them is better on some classes
than the other. For example, ABI is better at fresh snow, high
clouds, middle level clouds, while VIIRS is better at thin low
clouds, old snow, low clouds. The details will depend on the
differing spatial, temporal and radiometric performance, which
was not taken into account in this analysis. Therefore, for a
certain class/day, more bands do not necessarily yield better
classification results because not all spectral information is
useful for a certain class. Some bands are sensitive for snow and
they are probably not sensitive for low clouds. Some are sen-
sitive for high clouds and they are probably not sensitive for the
surface. Including those insensitive bands might result in
degraded classification. Take the class of water as an example,
the classification using 6 bands (the current GOES-12 Imager)
is better than that using 13 bands (ABI). These 6 bands are more
sensitive to the class of water, while the other 7 are less sen-
sitive. Therefore, one of the important tasks in cloud/surface
classification is to determine which bands are more sensitive to
a specific class.

This result also explains why the clustering method fails to
classify thin cirrus clouds (in fact, almost all very thin clouds).
There are only a few bands which are sensitive to cirrus, such as
the 1.38 μm band and some IR bands, while other bands are not
sensitive to cirrus at all. Thus, including those insensitive bands
might actually decrease the relative weight of those sensitive
bands since the weight for each band is fixed in the algorithm.

4.2. Case 2: desert case

Because desert has a large reflectance, it is often misclas-
sified as low clouds by reflectance threshold tests. For the desert
case we have chosen a MODIS granule at 13:00 UTC on 22
August 2004 (see Fig. 4 for the location of this granule). Focus
will be on correctly identifying the desert. Fig. 4(a)–(d) shows
the true color image, the surface mask, the MODIS cloud mask,
and the MODIS clustering classification, respectively. The
former two will be used as references to interpret MODIS
clustering classification. The image of the surface type is also at
1 km resolution (Olson, 1994a,b). Since our interest is to iden-
tify the desert, we regroup the classes into only three classes
(desert, land and clouds) after the clustering algorithm. The
desert area includes bare desert, semi desert shrubs and hot and
mild grasses and shrubs; the land area includes tropical rain-
forest, tropical degraded forest, rice paddy and field, savanna
and woody savanna etc; and the cloudy area includes high
clouds, middle level clouds, low clouds, cumulus and cirrus. In
this way, the capability of discriminating desert from land is
examined as well as discriminating clouds from clear (both land
and desert).

4.2.1. Interpretation of MODIS clustering classification
Most of the desert area appears to be clear in the true color

image (Fig. 4(a)). Those parts covered by clouds are classified
successfully in the MODIS cloud mask image (Fig. 4(c)).
However, many of the clear desert areas, which can be verified
through the true color image, are misclassified as other clouds in
the MODIS cloud mask image. For example, the southeastern
part of Mauritania (black circle in Fig. 4(c)) is mostly clear



Fig. 4. (a) True color image; (b) surface mask; (c) MODIS cloud mask; (d) MODIS clustering classification for case 13:00 UTC August 22, 2004.
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desert, which is classified as other clouds in the cloud mask.
Also, the eastern part of Niger is clear desert (black rectangle in
Fig. 4(c)), which can be verified by the true color image and is
classified as other clouds. Another large misclassification is that
the MODIS cloud mask misclassifies clear land as desert (black
ellipse). Between 10°N and 15°N, most of the clear areas are
classified as desert. However, from the surface mask image we
can see these areas are mainly covered by savanna and woods,
especially the northwestern part of Burkina Faso and south-
western part of Chad.

Most of the clear desert is successfully classified in the
MODIS clustering classification mask (Fig. 4(d)). The line of
13°N is located approximately at the border between desert and
land. North of the line is mostly desert, while south of it is
mostly land. Here we treat areas of hot and mild grasses and
shrubs as semi-desert. The MODIS clustering classification
can even detect small green areas surrounded by desert. In the
surface mask image, there is a small area of woods located at
7°E and 15°N. In the MODIS clustering classification mask, we
can recognize this wood area near the clouds (see the zoomed
part). The area south of these woods is classified as desert,
which is consistent with the surface mask.

At the border between land and desert, there are some dif-
ferences between the MODIS clustering classification mask and
the surface mask because the coverage of this area has strong
seasonal variation. It is desert year round, except during the rainy
season when it is partly covered by green vegetation. The rainy
season of Mali and Niger is from June to September. As a result,
more land is detected in the clustering classification mask than
the surface mask, specifically for the two relatively large areas
located to the north of 15°N, which are circled in Fig. 4(d).

Most of the clouds over desert are detected very well in the
MODIS clustering classification mask when compared with the
true color image. Note that the cumulus in the north is suc-
cessfully classified. However, over land, the detection is not
very good, especially for very thin clouds. As we can see from
the true color image, most land areas are covered by clouds,
especially thin clouds. While in the MODIS clustering clas-
sification mask, more than half of this area is classified as clear.
In fact, detection of very thin clouds, both low clouds and high
clouds, is still a challenge for this algorithm. However, in this
case, we mainly focus on the capability of the discrimination of
desert from low clouds and other clear land.

4.2.2. Classification by different sensors
The classification results by other sensors are shown in Fig. 5

and Table 5. Again, the MODIS clustering classification mask is
used as the standard. Compared with the MODIS clustering
classification, all five simulated sensors have excellent per-
formance except the current GOES-12 Imager, whose SL is
only 67.8%. Furthermore, we still see the improvements of the
future sensors over the current sensors. VIIRS has an SL of
95.1%, the best of all. And AVHRR/3 has an SL of 91.8%. The
improvement measured by SL is 95.1%–91.8%=3.3%. Also,
for each class, VIIRS performs better than AVHRR/3. For
example, the classification diagonal value of desert is 97.7%
for VIIRS while it is 95.1% for AVHRR/3. The improvement
of ABI over the current GOES-12 Imager is even more evident.



Fig. 5. Classification by different sensors (left column) and corresponding classification matrices (right column) for case 13:00 UTC August 22, 2004. From top to
bottom: ABI, AVHRR/3, the current GOES-12 Imager, SEVIRI, VIIRS. Off diagonal elements in classification matrices represents where the simulated sensors
disagree with MODIS.
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Table 5
Diagonal values of classification matrices for different sensors, 13:00 UTC
August 22, 2004

Desert Land Cloud SL

ABI 96.0 88.1 98.5 94.2
AVHRR/3 95.1 83.4 96.9 91.8
GOES 92.9 23.3 87.3 67.8
SEVIRI 97.0 79.4 95.2 90.5
VIIRS 97.7 88.8 98.7 95.1
Mean 95.7 72.6 95.3

322 Z. Li et al. / Remote Sensing of Environment 108 (2007) 311–326
ABI has an excellent performance with an SL of 94.2% while
the current GOES-12 Imager has a poor performance with an
SL of only 67.8%. Although the current GOES-12 Imager has
relatively large diagonal values for desert and cloud, the value
for land is only 23.3%, which means the current GOES-12
Imager can only detect 23.3% of the land detected by the
MODIS clustering classification algorithm in this particular
case. This makes the results of detecting desert meaningless.
Although the current GOES-12 Imager detects 92.9% of the
desert areas, it also misclassifies over 60% of the land as desert
(the second high pink bar in Fig. 5(f) for the current GOES-12
Imager). As for SEVIRI, since it is more advanced than the
current GOES-12 Imager and AVHRR/3 and less advanced
than ABI and VIIRS, results between them are expected.
Indeed, SEVIRI does have better performance (SL of 90.5%)
than the current GOES-12 Imager, but not as good as ABI
and VIIRS.

It might not be plausible that AVHRR/3 (6 parameters) has
better results than SEVIRI (11 parameters) as the results do
not show what the real AVHRR/3 can achieve, as will be
explained in the Discussion section. Examining the differ-
ences among the MODIS, ABI, SEVIRI and VIIRS clas-
sification results, it is found that the differences mainly come
from the boundaries of different classes that are adjacent.
This result is reasonable because it is hard to find an exact
border (edge) to discriminate the desert from other land, and
clouds from clear land.
Fig. 6. Classification by SEVIRI at SEVIRI resolution (left) and corresponding cla
clouds which is misclassified as fresh snow in SEVIRI classification. The classifica
5. Discussion

All five sensors have good capabilities on cloud/surface
classification except the current GOES-12 Imager in the sim-
ulation study using MODIS data. However, in reality the current
sensors (AVHRR/3, the current GOES-12 Imager and SEVIRI)
might not be able to achieve such good results. There are two
main reasons to constraining the performance of the current
sensors.

First, the spatial resolution is not as high as with MODIS. For
example, the spatial resolution is 4–8 km for the current GOES-
12 Imager and approximately 3 km for SEVIRI. When the
resolution is coarser, some information about the spatial vari-
ation is also smoothed out. Fig. 6(a) shows the SEVIRI clus-
tering classification at its original spatial resolution (3 km), and
Fig. 6(b) shows the classification matrix compared to MODIS.
The biggest problem here is the failure to detect the middle level
clouds over the west side of Hudson Bay (rectangle in Fig. 6(a)).
The SL here is only 74.5% (acceptable performance), and
41.0% of middle level clouds are misclassified as fresh snow
(see the pink bar labeled by an arrow in Fig. 6(b)). Besides, as
the resolution decrease to 3 km, the classification diagonal
values of classes of thin low clouds, old snow, fresh snow, and
middle clouds are reduced by around 30%. This is consistent
with what has been pointed out in the previous section; the four
classes are relatively difficult to detect, therefore, they are more
sensitive to the spatial resolution of the data.

The spatial resolution has different effects on the classifica-
tion from sensors onboard the geostationary and polar orbiting
satellites. For sensors onboard the polar orbiting satellites, the
spatial resolution may affect the classification in the way dis-
cussed above. For sensors onboard the geostationary satellites,
they do not have the similar viewing angle as polar orbiting
satellite sensors do. Take SEVIRI as an example. Due to the
high latitude in Case 1, the local zenith angle for a SEVIRI pixel
could be very large, which makes the spatial resolution even
coarser (worse classification as a result). Case 2 is very close to
equator. And the local zenith angle could be small. Thus the
ssification matrix (right). The pink bar labeled shows the percentage of middle
tion matrix is compared to MODIS clustering classification.



Fig. 7. Classification by (a) noise-added AVHRR/3; (c) AVHRR/3 without 2.13 μm band; (e) AVHRR/3 without 3.7 μm band; (g) ABI without 3.7/3.9 μm. The right
panels are the corresponding classification matrices. Off diagonal elements in classification matrices represents where the simulated sensors disagree with MODIS.
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Table 6
Classification matrix for noise-added AVHRR/3, 18:55 UTC February 4, 2004

Water t.low o.snow f.snow Low High Middle Other

Water 95.4 2.7 0.8 0.4 0 0.0 0.0 0.6
t.low 1.6 71.5 1.4 1.2 21.6 0.0 1.9 0.8
o.snow #2.6 0.2 47.6 39.1 0.0 0.0 0.2 10.4
f.snow 1.0 1.2 20.9 22.4 0.0 0.2 9.1 45.1
Low 0.0 2.5 0.1 0.1 94.4 1.9 0.8 0.2
High 0.0 6.5 0.0 0.0 0.7 71.2 21.5 0.1
Middle 0.2 6.4 14.0 14.6 1.5 1.5 58.3 3.7
Other 6.4 2.2 21.2 20.3 0.3 0.0 1.1 48.5

The column is the MODIS classification, and the row is the noise-added
AVHRR/3.
#2.6 means 2.6% of MODIS classified “water” is classified as “o.snow” by
noise-added AVHRR/3. Compare with Fig. 7(b).
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spatial resolution is not significantly different from the nadir for
SEVIRI. Thus, for sensors onboard geostationary satellites, the
classification depends on the location of selected scene. How-
ever, there is one class of exception. For thin cirrus clouds over
middle or high latitude regions, if the FOV is fully filled, the
optical depth is actually increased by the larger view angle from
the geostationary satellite, which makes them easier to detect.

The second reason for reduced performance is that mea-
surements by MODIS have a higher radiometric precision than
the current sensors. Although AVHRR/3 has a similar resolution
(1.1 km) to MODIS (1 km), the SNR is much smaller than for
MODIS. Fig. 7(a) shows the noise-added clustering classifica-
tion image by AVHRR/3. Noise here is normally distributed
with a mean of 0 and standard deviation 1/9, 1/9, 1/20, 0.12,
0.12, 0.12 for the AVHRR/3 6 bands. The first three are exactly
the reciprocal of the SNR and the latter three are the noise
equivalent difference of temperature at 300 K. Fig. 7(b) shows
the corresponding classification matrix comparing MODIS. For
better understanding, Table 6 shows the same results. The noise
has the greatest impact on fresh snow, old snow and middle
clouds. The clustering classification results for these three
classes are very poor. For fresh snow, only 22.4% are retained as
fresh snow, while 20.9% are classified as old snow, 9.1% as
middle clouds, and 45.1% as other cloud. For old snow, 47.6%
are retained, whereas 39.1% are classified as fresh snow and
10.4% as other clouds. For middle clouds, 58.3% are retained,
Fig. 8. (a) reflectance of band 2.13 μm; (
while 6.4% are classified as thin low clouds, 14.0% as old snow
and 14.6% as fresh snow. For comparison, 95.4% of water and
94.4% of low clouds are retained. The analysis above shows
that, for those classes that are easy to detect, such as water and
low clouds, the noise does not affect them too much. But for
middle level clouds, fresh snow and old snow, the effects/
degradations are evident.

These results also explain why the AVHRR/3 cannot give
results as good as shown in the previous section. As the precision
of data decreases, the classification gets worse. Also, in practice,
band 3A (band 6 of MODIS, 1.64 μm) and 3B (band 20 of
MODIS, 3.7 μm) are not available simultaneously. Band 3A is
on during the daytime for the purpose of snow and ice detection,
while band 3B is on during the nighttime for the purpose of cloud
mapping and surface temperature. It is also necessary to point
out that, since 15 of the 20 detectors on AquaMODIS band 6 are
either nonfunctional or noisy, band 7 (2.13 μm) is used as a
substitute of band 6. Fig. 7(c) shows the AVHRR/3 clustering
classification without the 2.13 μm band, and Fig. 7(d) is the
corresponding classification matrix compared to MODIS.
Although it seems that the 2.13 μm band does not affect the
classification very much (good performance with an SL of
82.9%), the class of thin low clouds is affected significantly. The
classification diagonal value for thin low clouds is only 51.2%
(poor performance) while it is 87.1% (good performance) if all 6
bands are used (Table 4). This indicates that the 2.13 μm band is
probably useful for detecting thin low clouds in addition to snow
and ice. Fig. 7(e) is the AVHRR/3 clustering classification
without the 3.7 μm band and (f) is the corresponding clas-
sification matrix. When turning the 3.7 μm band off, the most
significant problem is that it fails to discriminate fresh snow
from low clouds and middle level clouds (see circled area in
Fig. 7(e)). For ABI, the same situation happens when turning off
the 3.7/3.9 μm band(s) (Fig. 7(g) and (h)). Note here the clas-
sification fails to assign each class. In fact, in Fig. 7(e), the class
of middle level clouds should be low clouds and the class of fresh
snow should be middle level clouds.

Two reasons could explain why the 2.13 μm does not work
as well as 3.7 μm on snow coverage. The first reason is that
2.13 μm is not designed for snow detection as 1.64 μm.
Although the 2.13 μm has been used for snow products instead
b) brightness temperature of 3.7 μm.
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of 1.64 μm (Hall et al., 2002; Salomonson & Appel, 2006),
Salomonson and Appel also stated that the MODIS snow
product from Aqua is not as good as from Terra. The other
reason is that the contrast between snow and low/middle level
clouds is not as significant on 2.13 μm imagery as on 3.7 μm
imagery in this case. On Fig. 8(a), the snow area has a low
reflectance while the low level clouds have high reflectance and
middle level clouds have relative high reflectance. However,
this contrast between snow and low/middle level clouds is more
significant on 3.7 μm imagery. The snow has very low BT on
Fig. 8(b), while clouds have very large BT (this band has been
used for snow detection for AVHRR, see Allen et al., 1990)
Thus, when turning off band 7, the detection of snow is not
affected too much. But if turning off band 20, the detection of
snow failed. We show 2.13 μm imagery in unit of reflectance
and 3.7 μm imagery in unit of BT because these are the units
used in the clustering algorithm.

Not included in this study, however, there are also other
possible aspects that could affect the performance of the sensors.
For example, as mentioned before, the viewing angle of satellite
could change the spatial resolution, which affects the classifi-
cation. The spectral response function (SRF) could affect the
classification too. The normalized difference vegetation index
(NDVI) and spectral reflectance are sensitive to the sensor's
SRF. Trishchenko's (2002) studies show that the reflectance
and NDVI measured by MODIS bands 1 and 2 could have
differences as large as 30 to 40% relative to AVHRR.

6. Summary

A clustering classification algorithm, which uses the MODIS
cloud mask as the initial condition, was used to compare the
capabilities of different sensors on surface/cloud type detection
and classification. The MODIS VIS/NIR/IR 1 km resolution
spectral information and some spatial information (variance), as
well as radiance differences, are used in the classification. The
MODIS clustering classification is used as the reference. The
study using limited cases demonstrate that:

• In general, future sensors have better overall capability on
cloud/surface classification than the current ones. The main
reason for this is that future sensors have more spectral
bands. Both ABI (13 parameters) and VIIRS (12 parameters)
show excellent performance compared to MODIS. SEVIRI
(11 parameters) shows better performance than the adequate
AVHRR/3 (6 parameters). While the current GOES-12
Imager (6 parameters) classification is not as good as other
image sensors.

• For a specific class, it is not always true that more spectral
bands result in better classification. Some bands are more
sensitive than others for a specific class. Using those more
sensitive bands can achieve better performance. Thus, it is
important to determine which bands are more sensitive than
others. This will be one topic of future work.

• Spatial resolution and SNR also impact classification. As
spatial resolution becomes coarser, some information about
classes of small size will be smoothed out, which results in a
degraded classification. As SNR increases, the measured
radiance has more precision, which results in better clas-
sification. Those classes (such as middle level clouds, fresh
snow, and old snow) which are relatively hard to detect, are
more sensitive to spatial resolution and SNR.

• The 3.7 μm band could be used for detection of snow. And
the 2.13 μm band could be used for detection of low level
thin clouds.
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