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Abstract Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud
detection could reduce cloud contamination and hence improve the assimilation. Although operational
numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated
high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR
sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate
Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast
experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three-
Dimensional Variational Assimilation (3DVAR)-based Gridpoint Statistical Interpolation (GSI) as the analysis
system. Results indicate that forecasts of both hurricane track and intensity are substantially improvedwhen the
collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating
radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard Suomi-NPOESS Preparatory Project (NPP)/Joint Polar Satellite System
(JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer
(AVHRR) onboard the Metop series for improved radiance assimilation in NWP.

1. Introduction

Reliable forecasts of tropical cyclones (TCs), such as Isaac and Sandy which made landfall on the continental U.S.
during 2012, are critical for decisionmaking and timely preparation. Obtaining good TC intensity forecasts remains
one of the most challenging tasks in operational forecasting. Observations of atmospheric thermodynamic
variables in the TC environment, as well as in the inner core, are very important to the prediction of the storm
evolution and hence landfall. The optimal assimilation of this information into operational numerical weather
prediction (NWP) models is a vital step to improve forecasts. Satellite advanced infrared sounders (i.e., the
Atmospheric Infrared Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI), or Crosstrack Infrared
Sounder (CrIS)), along with advanced microwave sounders (i.e., the Advanced Microwave Sounding Unit (AMSU)
or Advanced Technology Microwave Sounder) provide valuable thermodynamic information over the oceans. In
particular, AMSU-A temperature information has been demonstrated to be very useful for hurricane forecast
improvements [Zapotocny et al., 2008; Liu et al., 2012]; while positive impacts of advanced IR sounder information
have been shown [Le Marshall et al., 2006;McNally et al., 2006], themoisture information is yet to be fully realized.

One of the challenges in assimilating advanced IR sounder radiances is cloud detection. Improved cloud
detection could reduce the incorrect detection of clear fields of view (FOVs) and improve the assimilation of
IR radiances. Although operational centers are using IR sounder data for clear pixel detection or clear channel
detection (e.g., by comparing observations and forward calculations from the background), they are not
using the collocated high spatial resolution imager data that could help sounder subpixel cloud detection
and characterization [Li et al., 2004]. By applying spatially and temporally collocated high spatial resolution
imager cloud mask, the thermodynamic information and cloud properties at the IR sounder subpixel level
can be well separated. For example, the clear IR sounder FOVs can be used for deriving atmospheric vertical
temperature and moisture profiles [Li et al., 2000], while the cloudy IR FOVs can be used for obtaining cloud
properties [Li et al., 2005a] and cloud-clearing [Li et al., 2005b]. In addition to improved sounder cloud
detection with collocated imager information, assimilating cloudy radiances will be very important in order
to take full advantage of IR sounder thermodynamic information in the tropical cyclone (TC) inner core

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2013GL059067

Key Points:
• The application of AIRS subpixel cloud
detection with 1 km MODIS cloud

• The analysis fields with assimilation of
accurate clear radiances are improved

• The forecasts are substantially
improved with the AIRS subpixel
cloud detection

Correspondence to:
P. Wang,
pei.wang@ssec.wisc.edu

Citation:
Wang, P., J. Li, J. Li, Z. Li, T. J. Schmit, and
W. Bai (2014), Advanced infrared sounder
subpixel cloud detection with imagers
and its impact on radiance assimilation in
NWP, Geophys. Res. Lett., 41, doi:10.1002/
2013GL059067.

Received 18 DEC 2013
Accepted 5 FEB 2014
Accepted article online 8 FEB 2014

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2013GL059067
http://dx.doi.org/10.1002/2013GL059067


region. Usually only clear IR channels (not affected by clouds) are used in most data assimilation systems;
cloud-contaminated channels have not been used effectively due to difficulties in modeling clouds in both
forecast and radiative transfer models. The discussion of using cloudy radiances in NWP is beyond the scope
of this article. The focus of this study is to investigate the impact of cloud detection on TC forecasts and to
improve the use of advanced IR sounder (AIRS, IASI, and CrIS) thermodynamic variables.

2. Methodology

Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System Terra and Aqua
satellites provides multispectral broadband radiance measurements and cloud products with high spatial
resolution not seen before. MODIS 1 km cloud products (information available online at http://daac.gsfc.nasa.
gov/MODIS/products.shtml) include, but are not limited to, the cloud mask (confident clear, probably clear,
confident cloudy, and probably cloudy) [Ackerman et al., 1998], the cloud-phase mask (water clouds, ice
clouds, and mixed phase) [Strabala et al., 1994; Baum et al., 2000], the cloud classification mask [Li et al., 2003;
Li et al., 2007], the cloud particle size (CPS), and the cloud optical thickness [King et al., 2003; Platnick et al.,
2003]. With a collocation methodology developed by Nagle [1998], AIRS subpixel cloud detection and
characterization can be derived by taking advantage of high spatial resolution MODIS cloud products. For
example, the MODIS cloud mask can be used for AIRS subpixel cloud detection, and the 1 km MODIS cloud-
phase and cloud-type mask can be used for AIRS subpixel cloud characterization, both of which are useful
for quality control in assimilating cloudy radiances. In recent experiments with Weather Research and
Forecasting (WRF)/Gridpoint Statistical Interpolation (GSI), it is found that some clear pixels are identified as
cloudy while cloudy pixels are identified as clear in the GSI system. While the data assimilation suffers from
these misclassifications [Hu and Xue, 2006], a better cloud detection could reduce the cloudy data mismatch
and improve the assimilation. The impact of cloud detection on AIRS radiance assimilation has been
investigated, and the collocated high spatial resolution (1 km) MODIS cloud mask product is used for AIRS
subpixel cloud detection.

3. Assimilation Method and Experimental Design

Developmental Testbed Center (DTC) Gridpoint Statistical Interpolation (GSI) is a three-dimensional incremental
variational system with a homogeneous background covariance matrix [Wu et al., 2002]. It was developed by
the National Centers for Environmental Prediction (NCEP) as a next-generation analysis system based on the
operational Spectral Statistical Interpolation analysis system. DTC transitioned the operational GSI system into a
community system that is widely used in the research environment [Kleist et al., 2009; Ma et al., 2011]. The
system is capable of assimilating various kinds of observations: from surface to upper air to radar to satellite
observations. The U.S. Joint Center for Satellite Data Assimilation (JCSDA) community radiative transfer model
[Saunders et al., 1999; Chen et al., 2010] is implemented into GSI for calculations of satellite radiances and the
derivatives under different atmospheric and surface conditions.

Hurricane Sandy (2012) was a late-season hurricane in the southwestern Caribbean Sea. It formed as a tropical
storm at 12.7°N, 78.8°W at 18 UTC on 22 October 2012 and then became a hurricane with a maximum wind
speed of 51.4m/s in eastern Cuba. After a weakening process when the storm passed the central and
northwestern Bahamas, it again strengthened while moving northeastward at 12 UTC on 27 October 2012 and
then reached a secondary peak while turning northwestward toward the Mid-Atlantic states [Blake et al., 2013].

In this study, experiments are carried out to study the impact of AIRS radiance assimilation using the MODIS
cloud mask on the Hurricane Sandy forecast. The assimilation is run at 6 h cycles with a ±1.5 h assimilation
window followed by a 72 h forecast. The assimilation period started at 18 UTC on 25 October 2012 (5 days
before Sandy’s landfall) to 00 UTC on 27 October 2012 and the forecast from 00 UTC on 27 October 2012 to
00 UTC on 30 October 2012. The initial and boundary conditions are from the NCEP Final Operational
Global Analysis data at every 6h [Li and Liu, 2009; Liu and Li, 2010; Wu et al., 2014; Zheng et al., 2013]. The
data assimilated in this paper include the Global Telecommunication System (GTS), AMSU-A, AIRS (GSI), and AIRS
MOD. GTS represents all the conventional data including the surface observations, radiosondes, wind profile, and
aircraft data. AMSU-A is the Advanced Microwave Sounding Unit data on NOAA-15, NOAA-18, and Metop-A.
Hereafter, AIRS (MOD) denotes the AIRS clear footprint (pixel) detection withMODIS, while AIRS (GSI) denotes AIRS
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clear footprint detection with GSI. It can
be seen that the locations of clear AIRS
(GSI) radiances are quite different from
thosewith the AIRS (MOD) [Li et al., 2004].

The Advanced Research Weather
Research and Forecasting Model
(WRF-ARW) version V3.2.1 is used as the

NWPmodel. The horizontal resolution is 12 km with a number of grid points of 400*350. The analysis domain
covers the southeastern part of North America, northern part of South America, and the southern and
western Atlantic Ocean. The microphysics scheme is the WRF Single_Moment six-class scheme [Hong and
Lim, 2006], and the cumulus parameterization is the Kain-Fritsch scheme [Kain, 2004]. Two experiments are
carried out (Table 1) to compare the impacts of the AIRS radiance under the GSI stand-alone AIRS cloud
detection and the AIRS/MODIS cloud detection method.

4. Experiments and Results
4.1. Data Assimilation

The coverage of AIRS radiance data assimilated under clear-sky conditions is shown in Figure 1 for AIRS
channel 210 (709.5659 cm�1) with the weighting function peaking around 450 hPa; Figure 1 (bottom left)

Table 1. Data Used in the Experimentsa

GTS AMSUA AIRS (GSI) AIRS (MOD)

GTS+AMSUA+AIRS (GSI) Yes Yes Yes
GTS+AMSUA+AIRS (MOD) Yes Yes Yes

aItalics indicate the AIRS radiance data with different cloud
detection method.
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Figure 1. (top) The weighting function of AIRS channel 210 (709.5659 cm�1), (bottom left) AIRS-alone cloud detection
(GSI), and (bottom right) AIRS cloud detection with MODIS for AIRS channel 210.
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shows the GSI stand-alone AIRS cloud detection, while Figure 1 (bottom right) shows the AIRS/MODIS cloud
detection. Similarly, the data coverage of AIRS channel 1477 (1345.31 cm�1) with the weighting function
peaking around 700 hPa is shown in Figure 2. There are some mismatched observations in the West Atlantic
and north of South America between AIRS (MOD) and AIRS (GSI); the AIRS (MOD) sees much less clear
footprints than the AIRS (GSI). As mentioned, only channels detected as cloud free are assimilated by GSI;
therefore, the reduced amount of data is due to more accurate cloud detection with the MODIS high spatial
resolution cloud mask product. The mismatched areas are the cloudy regions according to the MODIS cloud
mask. The GSI cloud detection failed to reject them and assimilated them as clear-sky radiances, which could
potentially degrade the analysis field due to the cloud contamination.

To better understand the advantage of AIRS subpixel cloud detection with the MODIS cloud mask, one
granule of AIRS brightness temperature and collocated MODIS high-resolution cloud mask are shown in
Figure 3. Figure 3 (right) reveals the collocated MODIS cloud mask for a small area outlined in Figure 3 (left).
The AIRS subpixel clear mask can be easily derived based on the MODIS cloud mask; there are four possible
categories for each MODIS pixel: confident clear, probably clear, uncertain, and cloudy. Only the AIRS
subpixels filled with the MODIS confident clear mask are considered clear footprints for assimilation and
forecast experiments.

To see the impact of different cloud detection methods on the assimilation, the difference between the
temperature and relative humidity of the analysis field between AIRS (MOD) and AIRS (GSI) at 06 UTC on
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Figure 2. (top) The weighting function of AIRS channel 1477 (1345.31 cm�1), (bottom left) AIRS-alone cloud detection
(GSI), and (bottom right) AIRS cloud detection with MODIS (lower right) for AIRS channel 1477.
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25 October 2012 is shown in Figures 4 and 5. In general, unsuccessful cloud detection results in more cloud
contamination in the radiance assimilation. Consequently, the analysis could either be colder or wetter
than it should be, or some combination of them. In this case, for the 500 hPa in Figure 4, the analysis
change is dominated by temperature; the AIRS (MOD) analysis is warmer than AIRS (GSI) due to less cloud
contamination. The impact of moisture field is subtle. For 700 hPa in Figure 5, the analysis change is visible
in both temperature and moisture fields. The temperature of AIRS (MOD) is about 1 K warmer than AIRS
(GSI) in the northwest of Atlantic Ocean and 0.6 K warmer in the east of Hurricane Sandy. The relative
humidity of AIRS (MOD) is nearly 30% drier in the northwest of Atlantic Ocean and around 10% drier in the
east of Hurricane Sandy. The different behaviors in 500 (Figure 4) and 700 hPa (Figure 5) are determined by
the assimilation method, which is closely related to the background covariance matrix [Derber and Bouttier,
1999]. No attempt is made to validate as to whether the analysis changes in Figures 5 and 6 are reasonable
or not. Instead, WRF-ARW is used to conduct forecasts for Hurricane Sandy. We believe better analyses
should lead to better hurricane forecasts, which will be shown in section 4.2.

Figure 4. (left) The difference in temperature (unit: K) and (right) relative humidity (unit: %) analysis between the two experiments (AIRS (MOD) and AIRS (GSI)) with
the geopotential height (solid, unit: m) of AIRS (MOD) at 500 hPa at 06 UTC on 25 October 2012.
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Figure 3. (left) The brightness temperature (unit: K) for one AIRS granule indicated in Figure 2 at 06 UTC on 25 October
2012 and (right) the collocated MODIS cloud mask for the small box area outlined by the rectangle in Figure 3 (left).
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4.2. Forecast Results and Discussion

Hurricane track and intensity
(characterized by minimum sea level
pressure and maximum wind speed) are
two important parameters for hurricane
forecasts. Figure 6 shows the root-mean-
square-error (RMSE) of the hurricane
track (top), minimum sea level pressure
(middle), and the maximum wind speed
(bottom) of the 72 h forecasts. The
GTS +AMSUA+AIRSrad (GSI) (blue) uses
the AIRS stand-alone cloud detection,
and the GTS +AMSUA+AIRSrad (MOD)
(red) uses the AIRS/MODIS cloud
detection method. For the hurricane
track, the RMSE is smaller with the AIRS/
MODIS cloud detection, especially after
30 h. The average improvement of the
hurricane track RMSE from the GSI cloud
detection to the MODIS cloud detection
is obvious. For the minimum sea level
pressure, the results with the AIRS/
MODIS cloud detection are better
during the whole 72 h forecast, although
the improvement in the first 12 h
forecasts is smaller. For the maximum
wind speed, the forecasts with MODIS
cloud detection are comparable to the
forecast with MOD (GSI) cloud detection,
with only a slight advantage. So for wind
speed, the impact of the AIRS/MODIS
cloud detection is neutral.

Figure 5. (left) The difference in temperature (unit: K) and (right) relative humidity (unit: %) analysis between the two experiments (AIRS (MOD) and AIRS (GSI)) with
the geopotential height (solid, unit: m) of AIRS (MOD) at 700 hPa at 06 UTC on 25 October 2012.
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Figure 6. The (top) track, (middle) central sea level pressure (SLP), and
(bottom) maximum wind speed forecast RMSE with the AIRS-alone cloud
detection (blue) and AIRS subpixel cloud detection with MODIS (red). Data
are assimilated every 6 h from 06 UTC on 25 October to 00 UTC on 27
October 2012, followed by 72h forecasts for Hurricane Sandy (2012).
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5. Summary

To investigate the impacts of the cloud detection from advanced IR sounders on the forecasts of hurricane
track and intensity, the AIRS stand-alone cloud detection and AIRS subpixel cloud detection with MODIS high
spatial resolution cloud mask product are compared. The stand-alone cloud detection is plugged into the
GSI system, and the subpixel cloud detection is based on the 1 km MODIS cloud mask. The data locations of
the assimilated AIRS radiances with the stand-alone cloud detection generally agree with the MODIS
cloud detection; however, there are some mismatched areas that the stand-alone cloud detection failed to
reject and assimilated as clear radiances. As a result, the stand-alone cloud detection allows more cloud-
contaminated radiances into the GSI, causing a cold bias in the temperature field and a wet bias in the
moisture field. This bias affects the forecasts of hurricane track and intensity. The 72 h forecasts of Hurricane
Sandy (2012) indicate that both hurricane track and intensity forecasts are improved when the collocated
high spatial resolution MODIS cloud mask product is used for the AIRS subpixel cloud detection. The RMSE of
the hurricane track is improved on average over the 72 h forecast period. This improvement is more evident
after 30 h in the forecasts. The minimum sea level pressure also improves during the whole forecast period.
These results indicate that the AIRS/MODIS cloud detection algorithm could benefit the hurricane forecast by
reducing the cloud-contaminated radiances into the assimilation system. This methodology can be applied
to process CrIS/VIIRS onboard Suomi-NPP/JPSS and IASI/AVHRR on board the Metop series for radiance
assimilation in the future.
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