CSPP Geo

Graeme Martin, Liam Gumley, Nick Bearson, Jessica Braun, Geoff Cureton, Ray Garcia, Tommy Jasmin, Scott Mindock, Kathy Strabala *University of Wisconsin – Madison, Space Science & Engineering Center*

> CSPP/IMAPP Users' Group Meeting 2015 Darmstadt, Germany 15 April 2015

Project History

- 2013: started discussing developing a software package for DB users to process GOES-R data
 - Leverage algorithms developed for GOES-R
 - Also wanted to allow users to process data from other satellites (Himawari AHI and current GOES)
 - Same development and distribution model as CSPP
- Late 2013: started pilot project
 - Current GOES imager, raw GVAR to L2 products
 - May 2014: released demo which ran on a canned dataset
- June 2014: funded by GOES-R program office and NOAA STAR.
 - assembled team and started work on software
- March 2015: first public software release
- April 2015: second public software release

GOES Rebroadcast (GRB)

- 6 instruments on GOES-R
- Data processed at ground segment to Level 1 (except Level 2 for GLM)
- GRB stream bounced back off GOES-R
- More information on the NOAA GRB web site: <u>http://www.goes-r.gov/users/grb.html</u>

Current GOES vs GOES-R

a					
	GOES Variable (GVAR)	GOES Rebroadcast (GF	RB)		
Full Disk Image	30 Minutes	5 Minutes (Mode 4) 15 min (Mode 3)			
Other Modes	Rapid Scan, Super Rapid Scan	3000 km X 5000 km (CONUS: 5 minute) 1000 km X 1000 km (Mesoscale: 30 second	is)		
Polarization	Linear	Dual Circular Polarized	i		
Receiver Center Frequency	1685.7 MHz (L-Band)	1686.6 MHz (L-Band)			
Data Compression	None	Lossless Compression		The second s	
		cossiess compression	A	BI	Current GOES Imager
Data Rate	2.11 Mbps	31 Mbps	A Spectral Coverage	3 16 bands	5 bands
Data Rate Antenna Coverage	2.11 Mbps Earth Coverage to 5 ⁰	31 Mbps Earth Coverage to 5 ^o	A Spectral Coverage Spatial Resolution	∃I 16 bands	5 bands
Data Rate Antenna Coverage Data Sources	2.11 Mbps Earth Coverage to 5 ^o Imager (5 bands), Sounder, Magnetometer	31 Mbps Earth Coverage to 5 ^o ABI (16 bands), GLM, 5 SUVI, MAG	A Spectral Coverage Spatial Resolution 0.64 µm Visible Other visible/near-IF	16 bands 0.5 km 1.0 km	5 bands ~ 1 km n/a
Data Rate Antenna Coverage Data Sources Space Weather	2.11 Mbps Earth Coverage to 5 ⁰ Imager (5 bands), Sounder, Magnetometer None	31 Mbps Earth Coverage to 5 ^o ABI (16 bands), GLM, SUVI, MAG ~2 Mbps	A Spectral Coverage Spatial Resolution 0.64 µm Visible Other visible/near-IF Bands (>2 µm)	16 bands 0.5 km 1.0 km 2 km	Current GOES Imager 5 bands ~ 1 km n/a ~ 4 km
Data Rate Antenna Coverage Data Sources Space Weather Lightning Data	2.11 Mbps Earth Coverage to 5° Imager (5 bands), Sounder, Magnetometer None None	31 Mbps Earth Coverage to 5 ^o ABI (16 bands), GLM, 5 SUVI, MAG ~2 Mbps ~0.5 Mbps	A Spectral Coverage Spatial Resolution 0.64 µm Visible Other visible/near-IF Bands (>2 µm) Spatial Coverage	16 bands 0.5 km 1.0 km 2 km	5 bands ~ 1 km n/a ~ 4 km

4/15/15

Every 30 sec

Mesoscale

n/a

- Ingests raw GRB stream, extracts payloads from packets and constructs datasets
- Primarily new Python code, NASA RT-STPS used for ingest
- Tested with Harris GRB simulator, DOE data
- High data rate drives software design and hardware spec
- GRB V0.1 prototype released March 2015
 - Creates ABI Level 1 and GLM Level 2 datasets
 - Writes output to NetCDF4 files
 - Test dataset provided
- Software and documentation available from website: <u>http://cimss.ssec.wisc.edu/csppgeo/</u>
 - Includes ICD describing planned upstream data interface
- Planning new releases ~every 3 months, eventually support all GOES-R instruments 4/15/15

GRB minimum hardware requirements

12 core, 2.4 GHz CPU with 64 -bit instruction support

32GB RAM

CentOS 6 64bit Linux (or other compatible 64-bit Linux distribution

100 GB disk space

CSPP Geo GVAR software

- Allows users to process GOES-13 and GOES-15 Imager data
- Input is GVAR data files and index files
- Output is AREA files, suitable for input into GEOCAT (not yet released), MCIDAS, or other software
- Initially adapted from MCIDAS code base
- V1.0 released early April 2015
 - Software and documentation available from website: <u>http://cimss.ssec.wisc.edu/csppgeo/</u>

GVAR minimum hardware requirements

Intel or AMD CPU with 64bit instruction support

4GB RAM (minimum)

CentOS 6 64bit Linux (or other compatible 64-bit Linux distribution) 100 GB disk space (minimum)

4/15/15

CSPP Geo HimawariCast software

- The JMA plans to distribute Himawari AHI data to DB users via the HimawariCast stream
 - Reduced spatial resolution, contains 14 of 16 channels
- Currently distributing MTSAT-2 data, will switch to H-8 this year
- We are developing software to convert HimawariCast data to AREA files
- Data must be decoded upstream using proprietary third-party software (Refer to JMA website)
- Beta release planned for end of May

HimawariCast coverage

13

Image courtesy of JMA (www.data.jma.go.jp)

GEOCAT

- GEOCAT is an algorithm testbed developed by Mike Pavolonis (NOAA STAR) and CIMSS
- Many of the GOES-R Algorithm Working Group algorithms were developed in Geocat
- Provides an easy way to distribute many product algorithms to DB users, including science updates
- Processes data from multiple instruments
- Recently added support for AHI data, scientists can now adapt algorithms

Geocat L1 AHI output

Ch 1 refl (0.47µm) 31 March 2015

CSPP Geo GEOCAT software

- Initial version will support GOES Imager and produce
 - cloud products (Andrew Heidinger, NOAA/STAR)
 - fog / low stratus (Mike Pavolonis, NOAA/STAR)
- Later versions will add support for AHI and ABI, add other L2 products and algorithm updates
- Ancillary data will be served from SSEC / CIMSS via the internet
- Design challenges:
 - Some L2 algorithms use data from previous timesteps;
 so all images must mapped to same projection
 - High data rate will require parallelization and substantial hardware
- Initial release summer 2015 4/15/15

Estimated system requirements*

CPU: Intel Xeon E5 v2 "Ivy Bridge", 20-core (2 x 10core), 2.8GHz

RAM: 192GB

Disk: 14TB (does not include long-term storage)

* includes imagery, clouds, fog, winds and hurricane intensity estimation

GEOCAT initial products

product	algorithm	maintainer
0.65 um reflectance	GEOCAT L1	GEOCAT team
3.9 um reflectance	GEOCAT L1	GEOCAT team
3.9 um brightness temperature	GEOCAT L1	GEOCAT team
6.7 um brightness temperature	GEOCAT L1	GEOCAT team
11.0 um brightness temperature	GEOCAT L1	GEOCAT team
13.3 um brightness temperature	GEOCAT L1	GEOCAT team
Cloud mask	Cloud mask	A Heidinger
Cloud phase	Cloud type	M Pavolonis
Cloud type	Cloud type	M Pavolonis
Cloud top height	Cloud height	S Wanzong
Cloud top temperature	Cloud height	S Wanzong
Cloud top pressure	Cloud height	S Wanzong
Cloud 11 um emissivity	Cloud height	S Wanzong
Cloud visible optical depth	DCOMP / NCOMP	A Walther / P Heck
Cloud effective radius	DCOMP / NCOMP	A Walther / P Heck
Cloud liquid water path	DCOMP / NCOMP	A Walther / P Heck
Cloud ice water path	DCOMP / NCOMP	A Walther / P Heck
Probability of Marginal Visual Flight Rules (MVFR)	Fog	M Pavolonis
Probability of Instrument Flight Rules (IFR)	Fog	M Pavolonis
Probability of Low Instrument Flight Rules (LIFR)	Fog	M Pavolonis
Low cloud geometric thickness	Fog	M Pavolonis

270 285

Future L2 processing packages

- AIT Framework
 - Developed by GOES-R Algorithm Integration Team
 - Most of the AWG algorithms run in the AIT framework
 - Assessing task of integrating and releasing as part of CSPP Geo
- Standalone algorithms / other processing systems

Personnel

Core CSPP Geo team

name	role
Liam Gumley	Principal Investigator
Graeme Martin	Project Manager
Jessica Braun	User support, documentation and testing
Kathy Strabala	User support, ancillary data
Scott Mindock	GVAR, HimawariCast, infrastructure
Nick Bearson	GRB
Tommy Jasmin	GRB
Geoff Cureton	GEOCAT, L2 products
Ray Garcia	Himawari, infrastructure

GOES-R AWG scientist collaborators

name	role
Andy Heidinger	Cloud team PI
Mike Pavolonis	Fog / low stratus team PI
Steve Wanzong	Cloud height
Andi Walther	Daytime cloud optical properties
Pat Heck	Nighttime cloud optical properties
Corey Calvert	Fog / low stratus

*blue comic sons indicates individuals attending the conference