

IASI/AIRS RTA

L. Strov UMBC

Overview RTA Status IASI vs AIRS Secant Bias Trends

IASI and AIRS Validation and Intercomparisons with SARTA

L. Larrabee Strow¹, Scott Hannon¹, and David Tobin²

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)¹ University of Wisconsin, SSEC²

September 16, 2008

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status IASI vs AIRS Secant Bias Trends

- AIRS/IASI/CrIS promise to give us a 20+ year hyperspectral time-series of climate
- How well can we tie together the AIRS and IASI records? (AIRS won't be around for CLARREO.)
- RTA performance and issues for climate
- A new method for deriving spectroscopy from radiances??

ASL Spectroscopy is not Climate-Quality

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status IASI vs AIRS Secant Bias Trends

- AIRS stability is <0.01K/year, probably sufficient for climate trends. IASI appears to have very good stability as well.
- Spectroscopy is only good to, at the very best, 0.1-0.2K
- Climate studies using retrievals require consistent RTA's, making intercomparisons among groups very difficult
- Retrievals sensitive to prior (assimilation), and cloud clearing performance (limited in troposphere in mid-, higher-latitudes)
- At present, I do not have a statistical set of high-quality coincident sondes measurements for IASI. Do they exist?
- IASI and AIRS agree far better than the spectroscopy

ASL

Capabilities of AIRS/IASI for Climate

Forcings not sensitive to clouds: CO₂, CH₄, dust, etc.

IASI/AIRS RTA

L. Strow UMBC

> 50 -40 -

30 -

20 -

- 01 - 0

-10 -

-20 -

-30 -

-40

2003

Overview

RTA Status IASI vs AIRS Secant Bias Trends

2 ppm/yr growth rate = 0.06K

4SL Status of SARTA RTA's

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIRS Secant Bias

- AIRS V5 RTA: tuned, older spectroscopy
- Tuning used ARM TWP (tested with ARM SGP) RS-90, Frost-Point hygrometer coincident radiosondes
- This work:
 - V6 RTAs
 - HITRAN 2004+ (ozone, water are main changes)
 - Presently "untuned", giving poorer performance, but our baseline
 - IASI clearly needs same tuning, but for different SRFs
- Biases shown are larger than used in AIRS V5 system. NOAA/NESDIS is using V6 RTA for IASI.
- AIRS frequency calibration on per-granule basis complete. Analysis not yet included in these results. Errors <0.05K and mostly random.

ASL Amount of Tuning

ASL ECMWF CO₂ Channels Agree Well with Sondes

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIR Secant Bias

ASL

After Feb. 2006 ECMWF Better in Upper-Trop So, need for tuning even more important?

Approach: IASI/AIRS Radiance Intercomparisons

IASI/AIRS RTA

- L. Strow UMBC
- Overview
- RTA Status
- IASI vs AIRS
- Secant Bias
- Trends

- Use two independent techniques to intercompare IASI and AIRS radiance.
 - Simultaneous nadir overpasses (SNOs).
 - $\bullet\,$ IASI and AIRS in different orbits, so tight time/space overlaps limits SNOs to ± 73.8 degrees
 - SNOs are relatively cold spectra, esp. in window regions.
 - ② Double-differences of sensor biases versus model (ECMWF)
 - RTA calculations using ECMWF model data can reproduce radiances for clear ocean-only FOVs to within ${\sim}0.2$ 1.0K in many channels.
 - Double differences;
 - $(obs cal(ECMWF))_{IASI} (obs cal(ECMWF))_{AIRS}$ removes most inaccuracies in the RTA and ECMWF
 - Essentially ECMWF used to interpolate over the 4 hour time difference in the orbits

ASL SNO Details (from Dave Tobin)

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIRS

Secant Bia

Trends

- Data from May 2007 to Feb. 2008
- Matchup thresholds are Δt = 2 minutes, Δd= 30 km, from nadir orbit crossing point
- This resulted in 284 SNO's each containing 3-4 IASI FOVs and 6-8 AIRS FOVs. Standard deviations of these individual measurements are made and propagated into means over the 284 SNO's.
- Except for shortwave, statistical errors in AIRS-IASI BT differences are roughly equivalent to the mean differences. SW statistics are not as good.
- Cross-convolve each radiance with other instrument's SRF

ASL Double-Difference Details

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIRS

Secant Bias

Trends

- Observations are clear ocean FOVs for month of July 2007 for latitude range of ± 25 degrees, where ECMWF is very good, diurnal variations smallest
- Essential that the RTA for both instruments has identical spectroscopy.
- Avoid channels with high sensitivity above 70 mbar
- Added correction for diurnal change in SST (not done in ECMWF)
- Cross-convolve each radiance with other instrument's SRF
- In doing this work, we found a small, sampling error in our IASI RTA production that can give \sim 0.2K errors that vary pseudo-randomly with frequency.

ASL Diurnal Correction

ASL Average Spectra for SNOs and Double-Diffs

Double-Differences: Obs AIRS-IASI B(T)s Therefore NO ECMWF calculations in this result

IASI/AIRS RTA

ASL

IASI/AIRS RTA

AIRS and IASI Biases vs ECMWF

Tronds

ASL IASI Contains "Fringing" in the ShortWave The cross-convolution with AIRS SRF averages out "fringing"

ASL Simulated Error in Double Diff

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIRS Secant Bias

Trends

Due to need to down-sample monochromatic spectra years ago to save memory. Will be fixed ASAP! Hurts strong high-altitude lines.

ASL AIRS-IASI B(T) Comparisons: Summary

L ShortWave Shows Large Differences for Double-Diff

IASI/AIRS RTA

L. Strow UMBC

Overview

IASI vs AIRS Secant Bias

Double-Diff B(T)'s are generally colder in this region.

IASI/AIRS RTA

L. Strow UMBC

Overview

IASI vs AIRS Secant Bias

IASI/AIRS RTA

L. Strow UMBC

Overview

IASI vs AIRS Secant Bias

Trends

ASL Summary by AIRS Module

L. Strov UMBC

- Overview RTA Status IASI vs AIRS
- Secant Bia

Module Statistics

ASL Module Statistics For Ddiff < 1650 cm⁻¹, all channels for P < 70 mbar: 0.10 +- 0.12 K

IASI/AIRS RTA	f_mod	DDiff	SNO	DDiff-SN	0
L. Strow UMBC	665.46	0.10	-0.01	0.11	
Overview	707.55 754.26	-0.00 0.08	-0.03 0.17	0.03 -0.09	0.02 +- 0.1
RTA Status					
IASI vs AIRS	819.98	0.11	0.20	-0.09	
Secant Bias	876.99	0.10	0.21	-0.11	
Trends	941.95	0.10	0.22	-0.12	-0.08 +-0.07
	1009.05	0.10	0.05	0.05	
	1095.32	0.16	0.28	-0.13	
	1244.23	0.10	0.16	-0.06	
	1311.09	0.13	0.14	-0.02	
	1492.98	0.22	0.14	0.09	-0.00 + 0.05
	1576.75	0.14	0.15	-0.01	
	1389.12	0.07	0.08	-0.01	
	2251.54	0.29	0.03	0.25	
	2506.70	-0.04	0.18	-0.22	
	2359.98	0.20	0.10	0.11	
	2602.30	-0.01	0.15	-0.16	

ASL Summary: AIRS vs IASI

IASI/AIRS RTA

L. Strow UMBC

Overview

RTA Status

IASI vs AIRS

Secant Bias

Trends

- Two approaches to IASI, AIRS inter-calibration show similar results
- Frequency calibration of AIRS not done here, will be at the 0.05K level or lower, will be ready soon for implementation
- Small IASI RTA errors limiting result, esp. standard deviations. We will build a new IASI RTA to fix this.
- Results suggest we are hitting the 0.1K level. Agreement between two approaches is getting below 0.1K
- Variability with AIRS arrays seen, suggesting adjustments may be warranted.
- More statistics needed.

ASL Biases vs ECMWF Vary with Secant of Viewing Angle

IASI/AIRS RTA

L. Strow UMBC

- Overview
- IASI vs AIRS

Secant Bias

Trends

- Empirical corrections used average biases
- Spectroscopy, constituent abundance errors will vary with viewing angle/secant
- Assume ECMWF errors do not depend on secant angle
- Fit $dbias = offset + slope \times \Delta secant$; offset very small
- If assume bias = (inst_bias, model_bias) + slope × secant can use above fit to determine slope, and then solve for (inst_bias,model_bias)
- Still need atmospheric constituent amount/profile to get spectroscopy

Fit Results: Slope of dbias/dsec Secant varies from 1 to 1.37

ASL Fit Results: Slope of dbias/dsec, zoom

IASI/AIRS RTA

L. Strov UMBC

Overview RTA Status IASI vs AIRS Secant Bias

ASL Fit Results: Slope of dbias/dsec, zoom

ASL Observed B(T) Trends

IASI/AIRS RTA

L. Strow UMBC

- Overview
- Secant Rias
- Trends

- Are clear scene observed B(T) trends useful?
- Possibly for long-lived forcing constituents, like CO₂
- And for strat versus trop temperature changes?
- Input data are clear, ocean FOVs average over 1 month

ASL Trends in Clear-FOV B(T)'s

IASI/AIRS RTA

L. Strow UMBC

Overview RTA Status

IASI vs AIR

Secant Bias

Trends

Trends in Clear-FOV B(T)'s Red is dBT/dt for a CO₂ growth rate of 2.2 ppm/year

IASI/AIRS RTA

- L. Strow UMBC
- Overview RTA Status
- Secant Rias
- Trends

ASL ODs : All instruments

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm
- 02/24/2007 02/22/2007
- 24/2007
- OLR forcing Fast estimate
- Conclusions

TL : AIRS BL : OMI TR : MODIS BR : PARASOL

IASI/AIRS RTA

L. Strow UMBC

- Overview
- RTA Status
- IASI vs AIRS
- Secant Bias
- Trends

- $\bullet\,$ RTA accuracy might be ${\sim}0.2K.$ Spectroscopy error from secant variation close to Slide 7 results from coincident sondes
- IASI and AIRS agree to better than 0.1K. Radiometric errors may depend on observed B(T). AIRS hotter by 0.1K?
- Further progress on Std. Dev. requires new IASI RTA, attention to AIRS frequency calibration
- Extremely small trends seen in clear FOV data, combination of CO₂, temperature, and H₂O
- Water trends probably not useful clear FOVs only introduces sampling errors.